Neural activity contributes to the regulation of the properties of synapses in sensory systems, allowing for adjustment to a changing environment. Little is known about how synaptic molecular components are regulated to achieve activity-dependent plasticity at central synapses. Here, we found that after prolonged exposure to natural ambient light the presynaptic active zone in Drosophila photoreceptors undergoes reversible remodeling, including loss of Bruchpilot, DLiprin-α, and DRBP, but not of DSyd-1 or Cacophony. The level of depolarization of the postsynaptic neurons is critical for the light-induced changes in active zone composition in the photoreceptors, indicating the existence of a feedback signal. In search of this signal, we have identified a crucial role of microtubule meshwork organization downstream of the divergent canonical Wnt pathway, potentially via Kinesin-3 Imac. These data reveal that active zone composition can be regulated in vivo and identify the underlying molecular machinery.
Insect mushroom bodies are critical for olfactory associative learning. We have carried out an extensive quantitative description of the synaptic organization of the calyx of adult Drosophila melanogaster, the main olfactory input region of the mushroom body. By using high-resolution confocal microscopy, electron microscopy-based three-dimensional reconstructions, and genetic labeling of the neuronal populations contributing to the calyx, we resolved the precise connections between large cholinergic boutons of antennal lobe projection neurons and the dendrites of Kenyon cells, the mushroom body intrinsic neurons. Throughout the calyx, these elements constitute synaptic complexes called microglomeruli. By single-cell labeling, we show that each Kenyon cell's claw-like dendritic specialization is highly enriched in filamentous actin, suggesting that this might be a site of plastic reorganization. In fact, Lim kinase (LimK) overexpression in the Kenyon cells modifies the shape of the microglomeruli. Confocal and electron microscopy indicate that each Kenyon cell claw enwraps a single bouton of a projection neuron. Each bouton is contacted by a number of such claw-like specializations as well as profiles of gamma-aminobutyric acid-positive neurons. The dendrites of distinct populations of Kenyon cells involved in different types of memory are partially segregated within the calyx and contribute to different subsets of microglomeruli. Our analysis suggests, though, that projection neuron boutons can contact more than one type of Kenyon cell. These findings represent an important basis for the functional analysis of the olfactory pathway, including the formation of associative olfactory memories.
How does the sensory environment shape circuit organization in higher brain centers? Here we have addressed the dependence on activity of a defined circuit within the mushroom body of adult Drosophila. This is a brain region receiving olfactory information and involved in long-term associative memory formation. The main mushroom body input region, named the calyx, undergoes volumetric changes correlated with alterations of experience. However, the underlying modifications at the cellular level remained unclear. Within the calyx, the clawed dendritic endings of mushroom body Kenyon cells form microglomeruli, distinct synaptic complexes with the presynaptic boutons of olfactory projection neurons. We developed tools for high-resolution imaging of pre- and postsynaptic compartments of defined calycal microglomeruli. Here we show that preventing firing of action potentials or synaptic transmission in a small, identified fraction of projection neurons causes alterations in the size, number, and active zone density of the microglomeruli formed by these neurons. These data provide clear evidence for activity-dependent organization of a circuit within the adult brain of the fly.
Asymmetric cell divisions generate cellular diversity. In Drosophila, embryonic neuroblasts target cell fate determinants basally, rotate their spindles by 90 degrees to align with the apical-basal axis, and divide asymmetrically in a stem cell-like fashion. In this process, apically localized Bazooka recruits Inscuteable and other proteins to form an apical complex, which then specifies spindle orientation and basal localization of the cell fate determinants and their adapter proteins such as Miranda. Here we report that Miranda localization requires the unconventional myosin VI Jaguar (Jar). In jar null mutant embryos, Miranda is delocalized and the spindle is misoriented, but the Inscuteable crescent remains apical. Miranda directly binds to Jar, raising the possibility that Miranda and its associated proteins are translocated basally by this actin-based motor. Our studies demonstrate that a class VI myosin is necessary for basal protein targeting and spindle orientation in neuroblasts.
Microtubule nucleation in vivo requires γ‐tubulin, a highly conserved component of microtubule‐organizing centers. In Drosophila melanogaster there are two γ‐tubulin genes, γTUB23C and γTUB37C. Here we report the cytological and molecular characterization of the 37C isoform. By Western blotting, this protein can only be detected in ovaries and embryos. Antibodies against this isoform predominantly label the centrosomes in embryos from early cleavage divisions until cycle 15, but fail to reveal any particular localization of γ‐tubulin in the developing egg chambers. The loss of function of this gene results in female sterility and has no effect on viability or male fertility. Early stages of oogenesis are unaffected by mutations in this gene, as judged both by morphological criteria and by localization of reporter genes, but the female meiotic spindle is extremely disrupted. Nuclear proliferation within the eggs laid by mutant females is also impaired. We conclude that the expression of the 37C γ‐tubulin isoform of D.melanogaster is under strict developmental regulation and that the organization of the female meiotic spindle requires γ‐tubulin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.