Multiple epiphyseal dysplasia (MED) is a relatively common skeletal dysplasia that can present in childhood with a variable phenotype of short stature and pain and stiffness in the large joints, and often progresses to early-onset osteoarthritis in adulthood. Mutations in the matrilin-3 gene (MATN3) have recently been shown to underlie some forms of autosomal dominant MED. To date all MED mutations in matrilin-3 cluster in the single A-domain, suggesting that they may disrupt the structure and/or function of this important domain. To determine the effects of MATN3 mutations on the structure and function of matrilin-3 we expressed both normal and mutant matrilin-3 in mammalian cells. Wild-type (wt) matrilin-3 was efficiently secreted into conditioned medium, whereas mutant matrilin-3 was retained and accumulated within the cell. Furthermore, when the mutant A-domains were examined individually, they existed primarily in an unfolded conformation. Co-immunoprecipitation experiments demonstrated that the mutant A-domains were specifically associated with ERp72, a chaperone protein known to be involved in mediating disulfide bond formation. Light microscopy of cartilage from an MED patient with a MATN3 mutation showed the presence of intracellular material within the chondrocytes, whilst the overall matrix appeared normal. On electron micrographs, the inclusions noted at the light microscopy level appeared to be dilated cisternae of rough endoplasmic reticulum and immunohistochemical analysis confirmed that the retained protein was matrilin-3. In summary, the data presented in this paper suggest that MED caused by MATN3 mutations is the result of an intracellular retention of the mutant protein.
The skeletal dysplasias are a clinically and genetically heterogeneous group of conditions affecting the development of the osseous skeleton and fall into the category of rare genetic diseases in which the diagnosis can be difficult for the nonexpert. Two such diseases are pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED), which result in varying degrees of short stature, joint pain and stiffness and often resulting in early onset osteoarthritis. PSACH and some forms of MED result from mutations in the cartilage oligomeric matrix protein (COMP) gene and to aid the clinical diagnosis and counselling of patients with a suspected diagnosis of PSACH or MED, we developed an efficient and accurate molecular diagnostic service for the COMP gene. In a 36-month period, 100 families were screened for a mutation in COMP and we identified disease-causing mutations in 78% of PSACH families and 36% of MED families. Furthermore, in several of these families, the identification of a disease-causing mutation provided information that was immediately used to direct reproductive decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.