The aim of this paper is to compare results from inhalation studies with those from intraperitoneal and intrapleural tests, where available, for a number of fibrous and particulate test materials. The objective is to determine how well intraperitoneal/intrapleural studies predict the pathological responses observed in more standard in vivo studies of pulmonary toxicity, with a particular focus on carcinogenicity. Published toxicity data was obtained for a number of materials including asbestos, wollastonite, MMVFs (including glass fibres, stone wools and RCF), silicon carbide whiskers, potassium octatitanate, quartz, kevlar, polypropylene and titanium dioxide. For some of the fibrous material reviewed, there is conformity between the results of intraperitoneal and inhalation tests such that they are either consistently positive or consistently negative. For the remaining fibrous materials reviewed, intraperitoneal and inhalation tests give different results, with positive results in the intraperitoneal test not being reflected by positive inhalation results. It is suggested that the intraperitoneal test can be used to exonerate a dust or fibre (because if negative in the intraperitoneal test it is extremely unlikely to be positive in either inhalation or intratracheal tests) but should not be used to positively determine that a dust or fibre is carcinogenic by inhalation. We would argue against the use of intraperitoneal tests for human health risk assessment except perhaps for the purpose of exoneration of a material from classification as a carcinogen.
The abuse of heroin (diamorphine) and heroin-related deaths are increasing around the world. The interpretation of the toxicological results from suspected heroin-related deaths is notoriously difficult, especially in cases where there may be limited samples. To help forensic practitioners with heroin interpretation, we determined the concentration of morphine (M), morphine-3-glucuronide (M3G), and morphine-6-glucuronide (M6G) in blood (femoral and cardiac), brain (thalamus), liver (deep right lobe), bone marrow (sternum), skeletal muscle (psoas), and vitreous humor in 44 heroin-related deaths. The presence of 6-monoacetylmorphine (6-MAM) in any of the postmortem samples was used as confirmation of heroin use. Quantitation was carried out using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with solid-phase extraction. We also determined the presence of papaverine, noscapine and codeine in the samples, substances often found in illicit heroin and that may help determine illicit heroin use. The results of this study show that vitreous is the best sample to detect 6-MAM (100% of cases), and thus heroin use. The results of the M, M3G, and M6G quantitation in this study allow a degree of interpretation when samples are limited. However in some cases it may not be possible to determine heroin/morphine use as in four cases in muscle (three cases in bone marrow) no morphine, M3G, or M6G were detected, even though they were detected in other case samples. As always, postmortem cases of suspected morphine/heroin intoxication should be interpreted with care and with as much case knowledge as possible.
Phenazepam is a benzodiazepine that is predominantly used clinically in the former Soviet states but throughout the wider world is being abused. This study reports the tissue distribution and concentration of both phenazepam and 3-hydroxyphenazepam in 29 cases quantitated by LC-MS/MS in a variety of postmortem fluids (subclavian blood, femoral blood, cardiac blood, urine, vitreous humor) and tissues (thalamus, liver and psoas muscle). In 27 cases the cause of death was not directly related to phenazepam (preserved (fluoride/oxalate) femoral blood phenazepam concentrations 0.007 mg/L to 0.360 mg/L (median 0.097 mg/L)). In two cases phenazepam was either a contributing factor to, or the certified cause of death (preserved (fluoride/oxalate) femoral blood 0.97 mg/L and 1.64 mg/L). The analysis of phenazepam and 3-hydroxyphenazepam in this study suggests that they are unlikely to be subject to large postmortem redistribution and that there is no direct correlation between tissues/fluid and femoral blood concentrations. Preliminary investigations of phenazepam stability comparing femoral blood phenazepam concentrations in paired preserved (2.5% fluoride/oxalate) and unpreserved blood show that unpreserved samples show on average a 14% lower concentration of phenazepam and we recommend that phenazepam quantitation is carried out using preserved samples wherever possible.
Nefopam is a non-opiate analgesic commonly used for the treatment of moderate to severe pain. A case of a 37-year-old male who was found dead in the morning is presented. An autopsy was performed and femoral venous blood, heart blood, urine, and vitreous humor were submitted for toxicological analysis. A general drug screen detected the presence of nefopam, caffeine, nicotine, citalopram, gabapentin, amitriptyline, diazepam and paracetamol in cardiac blood. Nefopam was quantitated by high-performance liquid chromatography with diode-array detection. Nefopam was found at the following concentrations: 13.6 mg/L in unpreserved femoral blood; 14.7 mg/L in preserved (fluoride-oxalate) femoral blood; 21.2 mg/L in unpreserved cardiac blood and 4.5 mg/L in preserved vitreous. Citalopram was present at a concentration of 0.7 mg/L (femoral blood) and 0.9 mg/L (cardiac blood). Ethanol analyzed by headspace gas chromatography (GC-FID) was detected in preserved (fluoride-oxalate) vitreous (14 mg/100 mL) and preserved (fluoride-oxalate) urine 50 mg/100 mL. Death was attributed to atherosclerotic coronary artery disease and therapeutic drug toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.