BACKGROUND. Seizure-induced inhibition of respiration plays a critical role in sudden unexpected death in epilepsy (SUDEP). However, the mechanisms underlying seizure-induced central apnea in pediatric epilepsy are unknown. METHODS. We studied 8 pediatric patients with intractable epilepsy undergoing intracranial electroencephalography. We recorded respiration during seizures and during electrical stimulation mapping of 174 forebrain sites. A machine-learning algorithm was used to delineate brain regions that inhibit respiration. RESULTS. In 2 patients, apnea coincided with seizure spread to the amygdala. Supporting a role for the amygdala in breathing inhibition in children, electrically stimulating the amygdala produced apnea in all 8 subjects (3-17 years old). These effects did not depend on epilepsy type and were relatively specific to the amygdala, as no other site affected breathing. Remarkably, patients were unaware that they had stopped breathing, and none reported dyspnea or arousal, findings critical for SUDEP. Finally, a machine-learning algorithm based on 45 stimulation sites and 210 stimulation trials identified a focal subregion in the human amygdala that consistently produced apnea. This site, which we refer to as the amygdala inhibition of respiration (AIR) site includes the medial subregion of the basal nuclei, cortical and medial nuclei, amygdala transition areas, and intercalated neurons. CONCLUSIONS. A focal site in the amygdala inhibits respiration and induces apnea (AIR site) when electrically stimulated and during seizures in children with epilepsy. This site may prove valuable for determining those at greatest risk for SUDEP and as a therapeutic target.
Background: The neural underpinnings of bipolar disorder (BD) remain poorly understood. The cerebellum is ideally positioned to modulate emotional regulation circuitry yet has been understudied in BD. Previous studies have suggested differences in cerebellar activity and metabolism in BD, however findings on cerebellar structural differences remain contradictory. Methods: We collected 3T anatomical MRI scans from participants with (N = 131) and without (N = 81) BD type I. Differences in cerebellar volumes were assessed along with factors that influence the results. Results: The cerebellar cortex was smaller bilaterally in participants with BD. Polygenic propensity score (bipolar N = 103, control N = 64) did not predict any cerebellar volumes, suggesting that non-genetic factors may have greater influence on the cerebellar volume difference we observed in BD. Cerebellar white matter volumes increased with more adverse childhood events, but we did not observe any associations with parental psychiatric illness. We also evaluated time from onset and symptom burden and found no associations with cerebellar volumes, suggesting neurodevelopment may differ prior to onset. Finally, we found taking sedatives was associated with larger cerebellar white matter and non-significantly larger cortical volume. Limitations: This study was cross-sectional, limiting interpretation of possible mechanisms. Most of our participants were White, which could limit the generalizability. Additionally, we did not account for potential polypharmacy interactions. Conclusions: These findings suggest that external influences, such as medications, may influence cerebellum structure in BD and may mask underlying differences. Accounting for medication may be critical for consistent findings in future studies.
Purpose: Studies of the neural underpinnings of bipolar type I disorder have focused on the emotional control network. However, there is also growing evidence for cerebellar involvement, including abnormal structure, function, and metabolism. Here, we sought to assess functional connectivity of the cerebellum with the cerebrum in bipolar disorder and to assess whether any effects might depend on mood. Methods: This cross-sectional study enrolled 128 participants with bipolar type I disorder and 83 control comparison participants who completed a 3T MRI scan, which included anatomical imaging as well as resting state BOLD imaging. Functional connectivity of the cerebellar vermis to all other brain regions was assessed. Based on quality control metrics of the fMRI data, 109 participants with bipolar disorder and 79 controls were used to in the statistical analysis comparing connectivity of the vermis as well as associations with mood. Potential impacts of medications were also explored. Results: Functional connectivity of the cerebellar vermis in bipolar disorder was found to differ significantly between brain regions known to be involved in the control of emotion, motor function, and language. While connections with emotion and motor control areas were significantly stronger in bipolar disorder, connection to a region associated language production was significantly weaker. In the participants with bipolar disorder, ratings of depression and mania were inversely associated with vermis functional connectivity. No effect of medications on these connections were observed. Conclusion: Together the findings suggest cerebellum may play a compensatory role in bipolar disorder and when it can no longer fulfill this role, depression and mania develop. The proximity of the cerebellar vermis to the skull may make this region a potential target for treatment with transcranial magnetic stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.