The various aspects of chemical crosslinking are addressed. Crosslinker reactivity, specificity, spacer arm length and solubility characteristics are detailed. Considerations for choosing one of these crosslinkers for a particular application are given as well as reaction conditions and practical tips for use of each category of crosslinkers.
A series of indole cyclopropylmethylamines were found to be potent serotonin reuptake inhibitors. Nitrile substituents at the 5 and 7 positions of the indole ring gave high affinity for hSERT, and the preferred cyclopropane stereochemistry was determined to be (1S,2S)-trans. The cis-cyclopropanes had 20- to 30-fold less affinity than the trans, and the preferred cis stereochemistry was (1R,2S)-cis. Substitution of the indole N-1 position with methyl or ethyl groups gave a 10- to 30-fold decrease in affinity for hSERT, suggesting either a hydrogen-bonding interaction or limited steric tolerance in the region of the indole nitrogen. Compound (+)-12a demonstrated potent hSERT binding (Ki = 0.18 nM) in vitro and was more than 1000-fold less potent at hDAT, hNET, 5-HT1A, and 5-HT6. In vivo, (+)-12a produced robust, dose-dependent increases in extracellular serotonin in rat frontal cortex typical of a selective serotonin reuptake inhibitor. The maximal response produced by (+)-12a was similar to that of fluoxetine but at an approximately 10-fold lower dose.
Evidence suggests that corticotropin-releasing factor-1 (CRF(1)) receptor antagonists may offer therapeutic potential for the treatment of diseases associated with elevated levels of CRF such as anxiety and depression. A pyrazinone-based chemotype of CRF(1) receptor antagonists was discovered. Structure-activity relationship studies led to the identification of numerous potent analogues including 12p, a highly potent and selective CRF(1) receptor antagonist with an IC(50) value of 0.26 nM. The pharmacokinetic properties of 12p were assessed in rats and Cynomolgus monkeys. Compound 12p was efficacious in the defensive withdrawal test (an animal model of anxiety) in rats. The synthesis, structure-activity relationships and in vivo properties of compounds within the pyrazinone chemotype are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.