Mice that lack the Nrf2 basic-region leucine-zipper transcription factor are more sensitive than wild-type (WT) animals to the cytotoxic and genotoxic effects of foreign chemicals and oxidants. To determine the basis for the decrease in tolerance of the Nrf2 homozygous null mice to xenobiotics, enzyme assay, Western blotting and gene-specific real-time PCR (TaqMan) have been used to examine the extent to which hepatic expression of GSH-dependent enzymes is influenced by the transcription factor. The amounts of protein and mRNA for class Alpha, Mu and Pi glutathione S-transferases were compared between WT and Nrf2 knockout (KO) mice of both sexes under both constitutive and inducible conditions. Among the class Alpha and class Mu transferases, constitutive expression of Gsta1, Gsta2, Gstm1, Gstm2, Gstm3, Gstm4 and Gstm6 subunits was reduced in the livers of Nrf2 mutant mice to between 3% and 60% of that observed in WT mice. Induction of these subunits by butylated hydroxyanisole (BHA) was more marked in WT female mice than in WT male mice. TaqMan analyses showed the increase in transferase mRNA caused by BHA was attenuated in Nrf2(-/-) mice, with the effect being most apparent in the case of Gsta1, Gstm1 and Gstm3. Amongst class Pi transferase subunits, the constitutive hepatic level of mRNA for Gstp1 and Gstp2 was not substantially affected in the KO mice, but their induction by BHA was dependent on Nrf2; this was more obvious in female mutant mice than in male mice. Nrf2 KO mice exhibited reduced constitutive expression of the glutamate cysteine ligase catalytic subunit, and, to a lesser extent, the expression of glutamate cysteine ligase modifier subunit. Little variation was observed in the levels of glutathione synthase in the different mouse lines. Thus the increased sensitivity of Nrf2(-/-) mice to xenobiotics can be partly attributed to a loss in constitutive expression of multiple GSH-dependent enzymes, which causes a reduction in intrinsic detoxification capacity in the KO animal. These data also indicate that attenuated induction of GSH-dependent enzymes in Nrf2(-/-) mice probably accounts for their failure to adapt to chronic exposure to chemical and oxidative stress.
Cruciferous vegetables contain glucosinolates that, after conversion to isothiocyanates (ITC), are capable of inducing cytoprotective genes. We examined whether broccoli seeds can elicit a chemoprotective response in mouse organs and rodent cell lines and investigated whether this response requires nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). The seeds studied contained glucosinolate at 40 mmol/kg, of which 59% comprised glucoiberin, 19% sinigrin, 8% glucoraphanin, and 7% progoitrin. Dietary administration of broccoli seeds to nrf2(+/+) and nrf2(-/-) mice produced a approximately 1.5-fold increase in NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione S-transferase (GST) activities in stomach, small intestine, and liver of wild-type mice but not in mutant mice; increased transferase activity was associated with elevated levels of GSTA1/2, GSTA3, and GSTM1/2 subunits. These seeds also increased significantly the level of glutamate cysteine ligase catalytic (GCLC) subunit in the stomach and the small intestine of nrf2(+/+) mice but not nrf2(-/-) mice. An aqueous broccoli seed extract was prepared for treatment of cultured cells that contained ITC at approximately 600 mumol/L, composed of 61% 3-methylsulfinylpropyl ITC, 30% sulforaphane, 4% allyl ITC, and 4% 3-butenyl ITC. This extract induced GSTA1/2, GSTA3, NQO1, and GCLC between 3-fold and 10-fold in mouse Hepa-1c1c7 and rat liver RL-34 cells. The broccoli seed extract affected increases in GSTA3, GSTM1, and NQO1 proteins in nrf2(+/+) mouse embryonic fibroblasts but not in nrf2(-/-) mouse embryonic fibroblasts. These experiments show that broccoli seeds are effective at inducing antioxidant and detoxication proteins, both in vivo and ex vivo, in an Nrf2-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.