Acetohydroxyacid synthase (AHAS, EC 4.1.3.18) is the first enzyme unique to the biosynthesis of valine, leucine, and isoleucine. This enzyme is the target site of several classes of structurally unrelated herbicides. The conventional method of antibody production using purified protein has not been successful with this enzyme. Two separate fragments of a gene encoding a portion of the mature region of AHAS from Arabidopsis were fused with the trpE gene from Escherichia coli using the pATH1 vector. E. coli cells transformed with each respective plasmid expressed a fusion protein at levels greater than 10% of the total cell protein. The fusion protein was purified and used to immunize rabbits. Antisera obtained from the immunized rabbits immunoprecipitated AHAS activity from Arabidopsis cell free extracts. The anti-AHAS antisera reacted with a 65 kilodalton protein band in electrophoretically resolved extracts of Arabidopsis. In crossreactivity tests, this antibody was able to immunoprecipitate AHAS activity from various plant species. Furthermore, a protein band with a molecular mass of 65 kilodaltons was detected in the crude extracts of all plant species tested on a Westem blot. These results indicate that the 65 kilodalton protein represents AHAS in various plant species. The wide spectrum of crossreactivity for the antisera supports the view that the AHAS enzyme is highly conserved across all plant species.
Acetohydroxyacid synthase activity is stabilized and stimulated by flavin adenine dinucleotide. Flavin adenine dinucleotide was found to cause aggregation of acetohydroxyacid synthase from the dimeric to a tetrameric form. The different aggregation states of the enzyme have differential sensitivities to inhibition by branched chain amino acids as well as by imazapyr, an imidazolinone herbicide. These observations indicate that flavin adenine dinucleotide is of structural as well as of functional importance for the plant acetohydroxyacid synthase enzyme.
Previous studies have shown that human colon carcinomas contain elevated amounts of chondroitin sulfate proteoglycan (CS-PG) and hyaluronic acid, and that the major site of synthesis of these products is the host mesenchyme surrounding the tumor. These findings have led to the proposal that the abnormal formation of the tumor stroma is modulated by the neoplastic cells. The experiments of this paper were designed to explore further this complex phenomenon in an in vitro system using co-cultures of phenotypically stable human colon smooth muscle (SMC) and carcinoma cells (WiDr). The results showed a 3-5-fold stimulation of CS-PG and hyaluronic acid biosynthesis in the co-cultures as compared to the values predicted from the individual cell type cultured separately. The increase in CS-PG was not due to changes in specific activity of the precursor pool, but was rather due to a net increase in synthesis, inasmuch as it was associated with neither a stimulation of cell proliferation nor with an inhibition of intracellular breakdown. These biochemical changes were corroborated by ultrastructural studies which showed a marked deposition of proteoglycan granules in the co-cultures. Several lines of evidence indicated that the SMC were responsible for the overproduction of CS-PG: i) SMC synthesized primarily CS-PG when cultured alone, in contrast to the WiDr, which synthesized exclusively heparan sulfate proteoglycan; ii) only the SMC in co-culture stained with an antibody raised against the amino terminal peptide of a CS-PG (PG-40), structurally and immunologically related to that synthesized by the SMC; iii) the stimulation of CS-PG in SMC could be reproduced, though to a lesser extent, using medium conditioned by WiDr, whereas medium conditioned by SMC had no effects on WiDr. In conclusion this study has reproduced in vitro a tumor-associated matrix with a proteoglycan composition similar to that observed in vivo and provides further support to the concept that production of a proteoglycan-rich extracellular environment is regulated by specific tumor-host cell interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.