Partial thickness rotator cuff tears are a common cause of pain in the adult shoulder. Despite their high prevalence, the diagnosis and treatment of partial thickness rotator cuff tears remains controversial. While recent studies have helped to elucidate the anatomy and natural history of disease progression, the optimal treatment, both nonoperative and operative, is unclear. Although the advent of arthroscopy has improved the accuracy of the diagnosis of partial thickness rotator cuff tears, the number of surgical techniques used to repair these tears has also increased. While multiple repair techniques have been described, there is currently no significant clinical evidence supporting more complex surgical techniques over standard rotator cuff repair. Further research is required to determine the clinical indications for surgical and nonsurgical management, when formal rotator cuff repair is specifically indicated and when biologic adjunctive therapy may be utilized.
In normal daily activity, ligaments are probably subjected to repeated loading rather than to repeated deformation. The viscoelastic response to repeated loading is creep; this effect has significance for ligament reconstructions, which potentially "stretch out" over time. However, most experimental studies have examined the viscoelastic response to repeated deformation, stress relaxation. We hypothesized that the creep of a ligament could be predicted from its stress-relaxation behaviour. Left and right medial collateral ligaments of eight skeletally mature rabbits were subjected to either creep or stress-relaxation testing under comparable conditions. The time-dependent increase in strain (creep) and reduction in load (relaxation) from the tests were modelled with use of the quasilinear viscoelastic theory and generalized standard linear solid modelling. Ligaments were found to creep distinctly less than would be predicted from relaxation tests. Although the reason for this behaviour remains unknown, we speculate that it is due to the progressive recruitment of collagen fibres during creep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.