IMPORTANCE Opportunistic screening for atrial fibrillation (AF) is recommended, and improved methods of early identification could allow for the initiation of appropriate therapies to prevent the adverse health outcomes associated with AF.OBJECTIVE To determine the effect of a self-applied wearable electrocardiogram (ECG) patch in detecting AF and the clinical consequences associated with such a detection strategy. DESIGN, SETTING, AND PARTICIPANTSA direct-to-participant randomized clinical trial and prospective matched observational cohort study were conducted among members of a large national health plan. Recruitment began November 17, 2015, and was completed on October 4, 2016, and 1-year claims-based follow-up concluded in January 2018. For the clinical trial, 2659 individuals were randomized to active home-based monitoring to start immediately or delayed by 4 months. For the observational study, 2 deidentified age-, sex-and CHA 2 DS 2 -VASc-matched controls were selected for each actively monitored individual. INTERVENTIONSThe actively monitored cohort wore a self-applied continuous ECG monitoring patch at home during routine activities for up to 4 weeks, initiated either immediately after enrolling (n = 1364) or delayed for 4 months after enrollment (n = 1291). MAIN OUTCOMES AND MEASURESThe primary end point was the incidence of a new diagnosis of AF at 4 months among those randomized to immediate monitoring vs delayed monitoring. A secondary end point was new AF diagnosis at 1 year in the combined actively monitored groups vs matched observational controls. Other outcomes included new prescriptions for anticoagulants and health care utilization (outpatient cardiology visits, primary care visits, or AF-related emergency department visits and hospitalizations) at 1 year. RESULTSThe randomized groups included 2659 participants (mean [SD] age, 72.4 [7.3] years; 38.6% women), of whom 1738 (65.4%) completed active monitoring. The observational study comprised 5214 (mean [SD] age, 73.7 [7.0] years; 40.5% women; median CHA 2 DS 2 -VASc score, 3.0), including 1738 actively monitored individuals from the randomized trial and 3476 matched controls. In the randomized study, new AF was identified by 4 months in 3.9% (53/1366) of the immediate group vs 0.9% (12/1293) in the delayed group (absolute difference, 3.0% [95% CI, 1.8%-4.1%]). At 1 year, AF was newly diagnosed in 109 monitored (6.7 per 100 person-years) and 81 unmonitored (2.6 per 100 person-years; difference, 4.1 [95% CI, 3.9-4.2]) individuals. Active monitoring was associated with increased initiation of anticoagulants (5.7 vs 3.7 per 100 personyears; difference, 2.0 [95% CI, 1.9-2.2]), outpatient cardiology visits (33.5 vs 26.0 per 100 personyears; difference, 7.5 [95% CI, 7.2-7.9), and primary care visits (83.5 vs 82.6 per 100 person-years; difference, 0.9 [95% CI, 0.4-1.5]). There was no difference in AF-related emergency department visits and hospitalizations (1.3 vs 1.4 per 100 person-years; difference, 0.1 [95% CI, −0.1 to 0]).CONCLUSIONS AND RELEVANCE ...
Efficient methods for screening populations for undiagnosed atrial fibrillation (AF) are needed to reduce its associated mortality, morbidity, and costs. The use of digital technologies, including wearable sensors and large health record data sets allowing for targeted outreach toward individuals at increased risk for AF, might allow for unprecedented opportunities for effective, economical screening. The trial's primary objective is to determine, in a real-world setting, whether using wearable sensors in a risk-targeted screening population can diagnose asymptomatic AF more effectively than routine care. Additional key objectives include (1) exploring 2 rhythm-monitoring strategies-electrocardiogram-based and exploratory pulse wave-based-for detection of new AF, and (2) comparing long-term clinical and resource outcomes among groups. In all, 2,100 Aetna members will be randomized 1:1 to either immediate or delayed monitoring, in which a wearable patch will capture a single-lead electrocardiogram during the first and last 2 weeks of a 4-month period beginning immediately or 4 months after enrollment, respectively. An observational, risk factor-matched control group (n = 4,000) will be developed from members who did not receive an invitation to participate. The primary end point is the incidence of new AF in the immediate- vs delayed-monitoring arms at the end of the 4-month monitoring period. Additional efficacy and safety end points will be captured at 1 and 3 years. The results of this digital medicine trial might benefit a substantial proportion of the population by helping identify and refine screening methods for undiagnosed AF.
Cardiovascular disease remains the leading cause of death and disease worldwide. As demands on an already resource-constrained healthcare system intensify, disease prevention in the future will likely depend on out-of-office monitoring of cardiovascular risk factors. Mobile health tracking devices that can track blood pressure and heart rate, in addition to new cardiac vital signs, such as physical activity level and pulse wave velocity (PWV), offer a promising solution. An initial barrier is the development of accurate and easily-scalable platforms. In this study, we made a customized smartphone app and used mobile health devices to track PWV, blood pressure, heart rate, physical activity, sleep duration, and multiple lifestyle risk factors in ≈250 adults for 17 continual weeks. Eligible participants were identified by a company database and then were consented and enrolled using only a smartphone app, without any special training given. Study participants reported high overall satisfaction, and 73% of participants were able to measure blood pressure and PWV, <1 hour apart, for at least 14 of 17 weeks. The study population's blood pressure, PWV, heart rate, activity levels, sleep duration, and the interrelationships among these measurements were found to closely match either population averages or values obtained from studies performed in a controlled setting. As a proof-of-concept, we demonstrated the accuracy and ease, as well as many challenges, of using mHealth technology to accurately track PWV and new cardiovascular vital signs at home.
ObjectivesThe advent of large databases, wearable technology, and novel communications methods has the potential to expand the pool of candidate research participants and offer them the flexibility and convenience of participating in remote research. However, reports of their effectiveness are sparse. We assessed the use of various forms of outreach within a nationwide randomized clinical trial being conducted entirely by remote means.MethodsCandidate participants at possibly higher risk for atrial fibrillation were identified by means of a large insurance claims database and invited to participate in the study by their insurance provider. Enrolled participants were randomly assigned to one of two groups testing a wearable sensor device for detection of the arrhythmia.ResultsOver 10 months, the various outreach methods used resulted in enrollment of 2659 participants meeting eligibility criteria. Starting with a baseline enrollment rate of 0.8% in response to an email invitation, the recruitment campaign was iteratively optimized to ultimately include website changes and the use of a five-step outreach process (three short, personalized emails and two direct mailers) that highlighted the appeal of new technology used in the study, resulting in an enrollment rate of 9.4%. Messaging that highlighted access to new technology outperformed both appeals to altruism and appeals that highlighted accessing personal health information.ConclusionsTargeted outreach, enrollment, and management of large remote clinical trials is feasible and can be improved with an iterative approach, although more work is needed to learn how to best recruit and retain potential research participants.Trial registrationClinicaltrials.govNCT02506244. Registered 23 July 2015.
Background Atrial fibrillation (AF) is common, often without symptoms, and is an independent risk factor for mortality, stroke and heart failure. It is unknown if screening asymptomatic individuals for AF can improve clinical outcomes. Methods mSToPS was a pragmatic, direct-to-participant trial that randomized individuals from a single US-wide health plan to either immediate or delayed screening using a continuous-recording ECG patch to be worn for two weeks and 2 occasions, ~3 months apart, to potentially detect undiagnosed AF. The 3-year outcomes component of the trial was designed to compare clinical outcomes in the combined cohort of 1718 individuals who underwent monitoring and 3371 matched observational controls. The prespecified primary outcome was the time to first event of the combined endpoint of death, stroke, systemic embolism, or myocardial infarction among individuals with a new AF diagnosis, which was hypothesized to be the same in the two cohorts but was not realized. Results Over the 3 years following the initiation of screening (mean follow-up 29 months), AF was newly diagnosed in 11.4% (n = 196) of screened participants versus 7.7% (n = 261) of observational controls (p<0.01). Among the screened cohort with incident AF, one-third were diagnosed through screening. For all individuals whose AF was first diagnosed clinically, a clinical event was common in the 4 weeks surrounding that diagnosis: 6.6% experienced a stroke,10.2% were newly diagnosed with heart failure, 9.2% had a myocardial infarction, and 1.5% systemic emboli. Cumulatively, 42.9% were hospitalized. For those diagnosed via screening, none experienced a stroke, myocardial infarction or systemic emboli in the period surrounding their AF diagnosis, and only 1 person (2.3%) had a new diagnosis of heart failure. Incidence rate of the prespecified combined primary endpoint was 3.6 per 100 person-years among the actively monitored cohort and 4.5 per 100 person-years in the observational controls. Conclusions At 3 years, screening for AF was associated with a lower rate of clinical events and improved outcomes relative to a matched cohort, although the influence of earlier diagnosis of AF via screening on this finding is unclear. These observational data, including the high event rate surrounding a new clinical diagnosis of AF, support the need for randomized trials to determine whether screening for AF will yield a meaningful protection from strokes and other clinical events. Trail registration The mHealth Screening To Prevent Strokes (mSToPS) Trial is registered on ClinicalTrials.gov with the identifier NCT02506244.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.