ABSTRACT:The relationships between non-contact anterior cruciate ligament injuries and the underlying biomechanics are still unclear, despite large quantities of academic research. The purpose of this research was to study anterior cruciate ligament strain during jump landing by investigating its correlation with sagittal plane kinetic/kinematic parameters and by creating an empirical model to estimate the maximum strain. Whole-body kinematics and ground reaction forces were measured from seven subjects performing single leg jump landing and were used to drive a musculoskeletal model that estimated lower limb muscle forces. These muscle forces and kinematics were then applied on five instrumented cadaver knees using a dynamic knee simulator system. Correlation analysis revealed that higher ground reaction force, lower hip flexion angle and higher hip extension moment among others were correlated with higher peak strain (p < 0.05). Multivariate regression analyses revealed that intrinsic anatomic factors account for most of the variance in strain. Among the extrinsic variables, hip and trunk flexion angles significantly contributed to the strain. The empirical relationship developed in this study could be used to predict the relative strain between jumps of a participant and may be beneficial in developing training programs designed to reduce an athlete's risk of injury. Keywords: ACL; muscle force; musculoskeletal modeling; risk factor; knee injuryDespite the large quantity of research available on non-contact anterior cruciate ligament (ACL) injuries, the contributing factors and their relative contribution to the injury is still under debate. 1 This is in part due to the difficulty of measuring ACL strain in vivo 2 and inability to relate the ACL strain to the possible contributing factors. Unless the relationships between body kinematics, muscle forces and ACL strain is understood, the mechanism of ACL injury will remain unclear. Understanding the mechanics behind these injuries is crucial for injury prevention. Injuries may be prevented if screening and training programs are created for athletes who display at-risk mechanics. [3][4][5] Sagittal plane factors have been identified as important contributors to ACL injury mechanisms. [6][7][8] In addition to these extrinsic biomechanical factors, ACL strain is also dependent on a number of intrinsic anatomic factors such as tibial slope, 9,10 femoral notch width, 11 and ACL size. 12 Although these factors are known correlates with ACL strain, the relative contribution of extrinsic biomechanical and intrinsic anatomical factors is unknown.Pioneering efforts have been made to understand the relationship between knee kinematics, kinetics and ACL strain by surgically placing strain gauges on ligaments in live participants. 13 However, for ethical reasons, such approaches have not been extended to activities that are dynamic in nature. Numerical modelling approaches have been used to address this gap [14][15][16] ; however, model validation is complicated by the lack...
Prophylactic knee brace could reduce the strain in the anterior cruciate ligament of high-risk subjects during drop-landing through altered muscle firing pattern associated with brace wear. This could help reduce the anterior cruciate ligament injury risk.
The mechanism of noncontact anterior cruciate ligament (ACL) injury is not well understood. It is partly because previous studies have been unable to relate dynamic knee muscle forces during sports activities such as landing from a jump to the strain in the ACL. We present a combined in vivo/in vitro method to relate the muscle group forces to ACL strain during jump-landing using a newly developed dynamic knee simulator. A dynamic knee simulator system was designed and developed to study the sagittal plane biomechanics of the knee. The simulator is computer controlled and uses six powerful electromechanical actuators to move a cadaver knee in the sagittal plane and to apply dynamic muscle forces at the insertion sites of the quadriceps, hamstring, and gastrocnemius muscle groups and the net moment at the hip joint. In order to demonstrate the capability of the simulator to simulate dynamic sports activities on cadaver knees, motion capture of a live subject landing from a jump on a force plate was performed. The kinematics and ground reaction force data obtained from the motion capture were input into a computer based musculoskeletal lower extremity model. From the model, the force-time profile of each muscle group across the knee during the movement was extracted, along with the motion profiles of the hip and ankle joints. This data was then programmed into the dynamic knee simulator system. Jump-landing was simulated on a cadaver knee successfully. Resulting strain in the ACL was measured using a differential variable reluctance transducer (DVRT). Our results show that the simulator has the capability to accurately simulate the dynamic sagittal plane motion and the dynamic muscle forces during jump-landing. The simulator has high repeatability. The ACL strain values agreed with the values reported in the literature. This combined in vivo/in vitro approach using this dynamic knee simulator system can be effectively used to study the relationship between sagittal plane muscle forces and ACL strain during dynamic activities.
Unloader knee braces are prescribed for patients with unicompartmental osteoarthritis of the knee. These braces aim to reduce pain in patients by applying a coronal moment to the knee to unload the symptomatic knee compartment. However, existing unloading mechanisms use straps that go directly behind the knee joint, to apply the needed moment. This can impinge on the popliteal artery and peroneal nerves thereby causing discomfort to the patient. Hence, these braces cannot be worn for prolonged periods of time. This research focused on developing a new knee brace to improve comfort while unloading the osteoarthritic knee. A new knee brace was developed that uses a four-point bending approach to unload the knee. In this brace, unloading can be adjusted, and the unloading mechanism is away from the joint. The new brace was tested on a cadaver specimen to quantify its capability to unload the knee compartment. The brace was also worn by a patient with osteoarthritis who subjectively compared it to his existing unloader brace. During cadaver testing, the new brace design could reduce the force exerted on the medial condyle by 25%. Radiographic images of the patient's knee confirmed that the brace unloaded the medial condyle successfully. The patient reported that the new brace reduced pain, was significantly comfortable to wear and could be used for a longer duration in comparison to his existing brace.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.