Volumetric liver segmentation is a prerequisite for liver transplantation and radiation therapy planning. In this paper, dilated deep residual network (DDRN) has been proposed for automatic segmentation of liver from CT images. The combination of three parallel DDRN is cascaded with fourth DDRN in order to get final result. The volumetric CT data of 40 subjects belongs to “Combined Healthy Abdominal Organ Segmentation” (CHAOS) challenge 2019 is utilized to evaluate the proposed method. Input image converted into three images using windowing ranges and fed to three DDRN. The output of three DDRN along with original image fed to the fourth DDRN as an input. The output of cascaded network is compared with the three parallel DDRN individually. Obtained results were quantitatively evaluated with various evaluation parameters. The results were submitted to online evaluation system, and achieved average dice coefficient is 0.93±0.02; average symmetric surface distance (ASSD) is 4.89±0.91. In conclusion, obtained results are prominent and consistent.
The study of human movement and biomechanics forms an integral part of various clinical assessments and provides valuable information toward diagnosing neurodegenerative disorders where the motor symptoms predominate. Conventional gait and postural balance analysis techniques like force platforms, motion cameras, etc., are complex, expensive equipment requiring specialist operators, thereby posing a significant challenge toward translation to the clinics. The current manuscript presents an overview and relevant literature summarizing the umbrella of factors associated with neurodegenerative disorder management: from the pathogenesis and motor symptoms of commonly occurring disorders to current alternate practices toward its quantification and mitigation. This article reviews recent advances in technologies and methodologies for managing important neurodegenerative gait and balance disorders, emphasizing assessment and rehabilitation/assistance. The review predominantly focuses on the application of inertial sensors toward various facets of gait analysis, including event detection, spatiotemporal gait parameter measurement, estimation of joint kinematics, and postural balance analysis. In addition, the use of other sensing principles such as foot-force interaction measurement, electromyography techniques, electrogoniometers, force-myography, ultrasonic, piezoelectric, and microphone sensors has also been explored. The review also examined the commercially available wearable gait analysis systems. Additionally, a summary of recent progress in therapeutic approaches, viz., wearables, virtual reality (VR), and phytochemical compounds, has also been presented, explicitly targeting the neuro-motor and functional impairments associated with these disorders. Efforts toward therapeutic and functional rehabilitation through VR, wearables, and different phytochemical compounds are presented using recent examples of research across the commonly occurring neurodegenerative conditions [viz., Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis, Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS)]. Studies exploring the potential role of Phyto compounds in mitigating commonly associated neurodegenerative pathologies such as mitochondrial dysfunction, α-synuclein accumulation, imbalance of free radicals, etc., are also discussed in breadth. Parameters such as joint angles, plantar pressure, and muscle force can be measured using portable and wearable sensors like accelerometers, gyroscopes, footswitches, force sensors, etc. Kinetic foot insoles and inertial measurement tools are widely explored for studying kinematic and kinetic parameters associated with gait. With advanced correlation algorithms and extensive RCTs, such measurement techniques can be an effective clinical and home-based monitoring and rehabilitation tool for neuro-impaired gait. As evident from the present literature, although the vast majority of works reported are not clinically and extensively validated to derive a firm conclusion about the effectiveness of such techniques, wearable sensors present a promising impact toward dealing with neurodegenerative motor disorders.
Volumetric estimation of the liver tumor is the first step to identifying the livers critical disorder. The liver and its tumor ratio prerequisite measures to select the therapeutic procedure. 3D printing and virtual reality platform require a segmented liver entity mask to evaluate the pre and post-treatment analysis. A cascaded U-Net model is proposed for automatic segmentation of liver and tumor in CT images. LiTS CT data set utilized for this study. The images were pre-processed using the windowing technique for contrast enhancement. Two U-Net models were modified for liver and tumor segmentation, respectively and connected in a cascaded manner. U-Net decoder end was modified in comparison to the original U-Net. The probability map of the first U-Net fed to the second U-Net and the input image to segment out the liver tumor. Eight subject volumetric CT datasets were utilized to test the cascaded U-Net performance and achieved average Dice coefficient for liver and tumor 0.95 and 0.69, respectively. Liver tumor diagnosis and treatment accuracy depend upon the precision of segmentation algorithms. Designed model segmented liver almost accurately and tumor segmented with limited accuracy. A further modification is required for the tumor segmentation cause of the occurrence of false negative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.