Argument Mining (AM) is a relatively recent discipline, which concentrates on extracting claims or premises from discourses, and inferring their structures. However, many existing works do not consider micro-level AM studies on discussion threads sufficiently. In this paper, we tackle AM for discussion threads. Our main contributions are follows: (1) A novel combination scheme focusing on micro-level inner-and inter-post schemes for a discussion thread. (2) Annotation of large-scale civic discussion threads with the scheme. (3) Parallel constrained pointer architecture (PCPA), a novel end-to-end technique to discriminate sentence types, inner-post relations, and interpost interactions simultaneously. 1 The experimental results demonstrate that our proposed model shows better accuracy in terms of relations extraction, in comparison to existing state-of-the-art models.
State-of-the-art argument mining studies have advanced the techniques for predicting argument structures. However, the technology for capturing non-tree-structured arguments is still in its infancy. In this paper, we focus on non-tree argument mining with a neural model. We jointly predict proposition types and edges between propositions. Our proposed model incorporates (i) task-specific parameterization (TSP) that effectively encodes a sequence of propositions and (ii) a proposition-level biaffine attention (PLBA) that can predict a non-tree argument consisting of edges. Experimental results show that both TSP and PLBA boost edge prediction performance compared to baselines.
This paper presents our proposed parser for the shared task on Meaning Representation Parsing (MRP 2020) at CoNLL, where participant systems were required to parse five types of graphs in different languages. We propose to unify these tasks as a text-to-graph-notation transduction in which we convert an input text into a graph notation. To this end, we designed a novel Plain Graph Notation (PGN) that handles various graphs universally. Then, our parser predicts a PGN-based sequence by leveraging Transformers and biaffine attentions. Notably, our parser can handle any PGN-formatted graphs with fewer frameworkspecific modifications. As a result, ensemble versions of the parser tied for 1st place in both cross-framework and cross-lingual tracks. * Contributed equally. Ozaki mainly developed PGN parser. Morio mainly developed neural models.
For analyzing online persuasions, one of the important goals is to semantically understand how people construct comments to persuade others. However, analyzing the semantic role of arguments for online persuasion has been less emphasized. Therefore, in this study, we propose a novel annotation scheme that captures the semantic role of arguments in a popular online persuasion forum, so-called ChangeMyView. Through this study, we have made the following contributions: (i) proposing a scheme that includes five types of elementary units (EUs) and two types of relations; (ii) annotating ChangeMyView which results in 4612 EUs and 2713 relations in 345 posts; and (iii) analyzing the semantic role of persuasive arguments. Our analyses captured certain characteristic phenomena for online persuasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.