We carried out both absolute and relative gravity measurements in the Izu Peninsula just before and after the March 1997 earthquake swarm occurred. The measurements revealed significant absolute gravity changes, which we find to be made of three spatial components. The first one is located near Cape Kawana, and would be associated with the volcanic activity that caused the earthquake swarm. The second one would be associated with shallow and localized magma intrusion just beneath Ito. The third one may be due to a change in the deep region beneath the Kita-Izu fault system, which is considered to be a major tectonic line of this region. The gravity changes can be used to detect underground mass movement. For this purpose, we first use crustal movement observations to construct an elastic dislocation model with two tensile faults and a left lateral fault. Then we use the gravity changes to constrain the density of the material which filled the tensile faults. We find that the density is likely to be small, and that the gravity changes of the first component are reproduced well by the fault model. The smallness of the density implies that highly vesiculated magma or water would have injected into the faults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.