This study focuses on the analysis of the cross-modal effects between sight (color) and smell (fragrance). While most previous researches have studied the harmony of color and fragrance using small-field colors such as patches and display stimuli, this study analyzes harmony in lighting environments. In our experiments, we focused on the finding that emotional states manifest themselves in responses in the orbitofrontal cortex and used near-infrared spectroscopy to evaluate orbitofrontal responses. Five different aromas were prepared for fragmentation. Initially, the observers were asked to select the most pleasant and least unpleasant aromas. The two selected aromas were soaked in non-fat cotton cloth and placed in a light-shielding brown bottle, which was used as a scent stimulus. For the lighting environment, 36 different lighting colors were designed using a luminaire consisting of 14 LEDs. The results of the experiment showed that the lighting color that the observers judged to be harmonious by actually smelling the fragrance (sensory color) activated the orbitofrontal cortex more than the lighting color that they judged to be harmonious by recalling the name of the fragrance (imagery color).
Functional lighting can control a specific wavelength in order to emphasize a desired color signal of an object. In this study, for the purpose of designing functional lighting for cheese, the effect of lighting on the palatability of cheese was analyzed from reflected light. To investigate the palatability difference caused by different illuminants, a psychophysical experiment was conducted using five types of cheese under metameric lighting with fixed color temperature and illuminance. A total of eight observers participated in this experiment: four of them who loved eating cheese were classified as group A, and the remaining four who disliked eating it were classified as group B. The experiment revealed that observers in group A agreed that illumination sources made the cheese look most palatable, whereas observers in group B showed variability in their preferred light sources. Based on these results, guidelines for designing an illumination source that can improve cheese palatability by controlling the wavelength band were determined, under the constraint that the reflected light exists within a specific chrominance region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.