Motivation Evolution of cancer is driven by few somatic mutations that disrupt cellular processes, causing abnormal proliferation and tumor development, while most somatic mutations have no impact on progression. Distinguishing those mutated genes that drive tumorigenesis in a patient is a primary goal in cancer therapy: Knowledge of these genes and the pathways on which they operate can illuminate disease mechanisms and indicate potential therapies and drug targets. Current research focuses mainly on cohort-level driver gene identification, but patient-specific driver gene identification remains a challenge. Methods We developed a new algorithm for patient-specific ranking of driver genes. The algorithm, called PRODIGY, analyzes the expression and mutation profiles of the patient along with data on known pathways and protein-protein interactions. Prodigy quantifies the impact of each mutated gene on every deregulated pathway using the prize collecting Steiner tree model. Mutated genes are ranked by their aggregated impact on all deregulated pathways. Results In testing on five TCGA cancer cohorts spanning >2500 patients and comparison to validated driver genes, Prodigy outperformed extant methods and ranking based on network centrality measures. Our results pinpoint the pleiotropic effect of driver genes and show that Prodigy is capable of identifying even very rare drivers. Hence, Prodigy takes a step further towards personalized medicine and treatment. Availability The Prodigy R package is available at: https://github.com/Shamir-Lab/PRODIGY. Supplementary information Supplementary data are available at Bioinformatics online.
Background: Evolution of cancer is driven by few somatic mutations that disrupt cellular processes, causing abnormal proliferation and tumor development, while most somatic mutations have no impact on progression. Distinguishing those mutated genes that drive tumorigenesis in a patient is a primary goal in cancer therapy: Knowledge of these genes and the pathways on which they operate can illuminate disease mechanisms and indicate potential therapies and drug targets. Current research focuses mainly on cohort-level driver gene identification, but patient-specific driver gene identification remains a challenge. Methods:We developed a new algorithm for patient-specific ranking of driver genes. The algorithm, called PRODIGY, analyzes the expression and mutation profiles of the patient along with data on known pathways and protein-protein interactions. Prodigy quantifies the impact of each mutated gene on every deregulated pathway using the prize collecting Steiner tree model. Mutated genes are ranked by their aggregated impact on all deregulated pathways. Results:In testing on five TCGA cancer cohorts spanning >2500 patients and comparison to validated driver genes, Prodigy outperformed extant methods and ranking based on network centrality measures.Our results pinpoint the pleiotropic effect of driver genes and show that Prodigy is capable of identifying even very rare drivers. Hence, Prodigy takes a step further towards personalized medicine and treatment.Availability: The Prodigy R package is available at: https://github.com/Shamir-Lab/PRODIGY.
Precision oncology is gradually advancing into mainstream clinical practice, demonstrating significant survival benefits. However, eligibility and response rates remain limited in many cases, calling for better predictive biomarkers. Here we present ENLIGHT, a transcriptomics-based computational approach that identifies clinically relevant genomic interactions and uses them to predict patients' response to a variety of therapies in multiple cancer types without training on previous response data. We study ENLIGHT in two translationally oriented scenarios, Personalized Medicine (PM), aimed at prioritizing treatments for a single patient, and Clinical Trial Design (CTD), selecting the most likely responders in a patient cohort. Evaluating ENLIGHT's PM performance on 21 blinded clinical trial datasets, we show that it can effectively predict treatment response across multiple therapies and cancer types (obtaining an odds ratio of 2.59), substantially improving upon SELECT, a previously published transcriptomics-based approach, and performing as well as supervised predictors developed for specific indications and drugs, but on a much broader array of therapies and indications. In the CTD scenario, ENLIGHT can markedly enhance the success of clinical trials by excluding non-responders while achieving more than 90% of the response rate attainable under an optimal exclusion strategy. In sum, ENLIGHT is one of the first approaches to demonstrably predict therapeutic response across multiple cancer types by leveraging the transcriptome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.