Intra-cellular active transport by native cargos is ubiquitous. We investigate the motion of spherical nano-particles (NPs) grafted with flexible polymers that end with a nuclear localization signal peptide. This peptide allows the recruitment of several mammalian dynein motors from cytoplasmic extracts. To determine how motor–motor interactions influenced motility on the single microtubule level, we conducted bead-motility assays incorporating surface adsorbed microtubules and combined them with model simulations that were based on the properties of a single dynein. The experimental and simulation results revealed long time trajectories: when the number of NP-ligated motors Nm increased, run-times and run-lengths were enhanced and mean velocities were somewhat decreased. Moreover, the dependence of the velocity on run-time followed a universal curve, regardless of the system composition. Model simulations also demonstrated left- and right-handed helical motion and revealed self-regulation of the number of microtubule-bound, actively transporting dynein motors. This number was stochastic along trajectories and was distributed mainly between one, two, and three motors, regardless of Nm. We propose that this self-regulation allows our synthetic NPs to achieve persistent motion that is associated with major helicity. Such a helical motion might affect obstacle bypassing, which can influence active transport efficiency when facing the crowded environment of the cell.
Targeting the cell nucleus remains a challenge for drug delivery. Here we present a universal platform for smart design of nano-particles (NPs) decoration that allows recruitment of multiple dynein motors to drive their active motion towards the nucleus. The uniqueness of our approach is based on using: (i) a spacer polymer, commonly Biotin-Polyethylene-glycol-thiol (B-PEG-SH), whose grafting density and molecular weight can be tuned thereby allowing NP transport optimization, and (ii) protein binding peptides, like cell penetrating, NLS, or cancer targeting, peptides. Universal chemistry is employed to link peptides to the PEG free-end. To manifest our platform, we use a SV40T large antigen-originating NLS peptide. Our modular design allows tuning the number of recruited motors, and to replace the NLS by a variety of other localization signal molecules. Our control of the NP decoration scheme, and the modularity of our platform, carries great advantage for nano-carrier design for drug delivery applications.
The ESCRT machinery mediate membrane remodeling in numerous processes in cells including cell division and nuclear membrane reformation. The identification of ESCRT homologs in Asgard archaea, currently considered the closest ancestor of eukaryotes, suggests a role for ESCRTs in the membrane remodeling processes that occurred during eukaryogenesis. Yet, the function of these distant ESCRT homologs is mostly unresolved. Here we show that Asgard ESCRT-III proteins self-assemble into homo- and hetero- helical tubes, a hallmark of the eukaryotic ESCRT system. Asgard ESCRT-III tube assembly was facilitated in the presence of DNA and inhibited by DNAase. Notably, Asgard ESCRT-III filaments remodeled eukaryotic-like membrane vesicles, also in the presence of DNA, indicating an ancient role for the ESCRT complex in membrane remodeling, that may involve DNA binding. The ability of Asgard archaeal ESCRTs to remodel eukaryotic-like membranes, places them at the junction between prokaryotes and eukaryotes, substantiating a role for ESCRTs in eukaryogenesis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.