The sheer amount of digital data generated by the proliferation of filmless medical imaging, poses great scalability and manageability challenges to PACS systems. Manageability challenges are aggravated when weighing legislative requirements. An architecture for an enterprise level PACS should support the management of assorted medical objects (e.g., images and reports). Additionally, the architecture should allow services, including performance and reliability, to be tailored to classes of objects according to complex and possibly varying rules. The design should be flexible, allowing for on-demand cost-effective scaling, using a mix-and-match selection of hardware, operating systems, and storage devices. In light of the increased reliance on stored data, it should ensure 24x7 availability, even during system upgrade, and allow pluggable support for future formats. The Medical Object Management System (MOMS) presented in this paper, is an enterprise medical imaging solution architectured to meet the above demands. Flexible, configurable and scalable content and source based management of objects enables administrators to define and modify policies that govern various aspects of the objects' life-cycles, using either configuration files or a Web-based GUI. The modular architecture of MOMS includes (possibly multiple) instances of interface (DICOM, HL7 and Tivoli Storage Manager), storage management and administration agents. Agent instances are hot-pluggable, allowing for zero-downtime upgrades, and can be deployed on a heterogeneous and distributed infrastructure. Leveraging the expertise gained in the development and deployment of the IDMR research PACS project, combined with recent technological advances and modern middleware, MOMS delivers a solution for the present and future requirements of medical objects management.
Mobile enterprise applications are the next evolutionary step when combining the usage of enterprise applications and the widespread adoption of mobile computing by professionals in any organization. In a reality where applications are accessed from the user's personal mobile device (a phenomenon called "bring your own device" -BYOD), enterprises face various challenges in order to properly leverage new opportunities without compromising data integrity. One approach to handle these challenges is to devise a platform that allows the creation and consumption of enterprise applications, without exposing the users and the organization to risks that are part of this new usage model. Here we describe some of the constraints, trade-offs and design decisions that compose the software architecture of a mobile enterprise application platform, one that allows the creation, deployment and management of hybrid mobile applications, all in a BYOD usage model without compromising the organizational security policies.
Managing medical digital information objects, and in particular medical images is an enterprise-grade problem. Firstly, there is the sheer amount of digital data that is generated in the proliferation of digital (and film-free) medical imaging. Secondly, the managing software ought to enjoy high availability, recoverability and manageability that are found only in the most business-critical systems. Indeed, such requirements are borrowed from the business enterprise world. Moreover, the solution for the medical information management problem should too employ the same software tools, middlewares and architectures.It is safe to say that all first-line medical PACS products strive to provide a solution for all these challenging requirements. The DICOM standard has been a prime enabler of such solutions. DICOM created the interconnectivity, which made it possible for PACS services to manage millions of exams consisting of trillions of images. With the more comprehensive IHE architecture, the enterprise is expanded into a multi-facility regional conglomerate, which presents extreme demands from the data management system. HIPPA legislations add considerable challenges per security, privacy and other legal issues, which aggravate the situation.In this paper, we firstly present what in our view should be the general requirements for a first-line medical PACS, taken from an enterprise medical imaging storage and management solution perspective. While these requirements can be met by homegrown implementations, we suggest looking at the existing technologies, which have emerged in the recent years to meet exactly these challenges in the business world. We present an evolutionary process, which led to the design and implementation of a medical object management subsystem. This is indeed an enterprise medical imaging solution that is built upon respective technological components. The system answers all these challenges simply by not reinventing wheels, but rather reusing the best "wheels" for the job. Relying on such middleware components allowed us to concentrate on added value for this specific problem domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.