Abstract. Many real-life applications involve systems that change dynamically over time. Thus, throughout the continuous operation of such a system, it is required to compute solutions for new problem instances, derived from previous instances. Since the transition from one solution to another incurs some cost, a natural goal is to have the solution for the new instance close to the original one (under a certain distance measure). In this paper we develop a general model for combinatorial reoptimization, encompassing classical objective functions as well as the goal of minimizing the transition cost from one solution to the other. Formally, we say that A is an (r, ρ)-reapproximation algorithm if it achieves a ρ-approximation for the optimization problem, while paying a transition cost that is at most r times the minimum required for solving the problem optimally. When ρ = 1 we get an (r, 1)-reoptimization algorithm. Using our model we derive reoptimization and reapproximation algorithms for several important classes of optimization problems. This includes fully polynomial time reapproximation schemes for DP-benevolent problems, a class introduced by Woeginger (Proc. Tenth ACM-SIAM Symposium on Discrete Algorithms, 1999 ), reapproximation algorithms for metric Facility Location problems, and (1, 1)-reoptimization algorithm for polynomially solvable subset-selection problems. Thus, we distinguish here for the first time between classes of reoptimization problems, by their hardness status with respect to minimizing transition costs while guaranteeing a good approximation for the underlying optimization problem.
Many real-life applications involve systems that change dynamically over time. Thus, throughout the continuous operation of such a system, it is required to compute solutions for new problem instances, derived from previous instances. Since the transition from one solution to another incurs some cost, a natural goal is to have the solution for the new instance close to the original one (under a certain distance measure). In this paper we develop a general model for combinatorial reoptimization, encompassing classical objective functions as well as the goal of minimizing the transition cost from one solution to the other. Formally, we say that A is an (r, ρ)-reapproximation algorithm if it achieves a ρapproximation for the optimization problem, while paying a transition cost that is at most r times the minimum required for solving the problem optimally. When ρ = 1 we get an (r, 1)-reoptimization algorithm. Using our model we derive reoptimization and reapproximation algorithms for several important classes of optimization problems. This includes fully polynomial time reapproximation schemes for DP-benevolent problems, a class introduced by Woeginger (Proc. Tenth ACM-SIAM Symposium on Discrete Algorithms, 1999 ), reapproximation algorithms for metric Facility Location problems, and (1, 1)-reoptimization algorithm for polynomially solvable subset-selection problems. Thus, we distinguish here for the first time between classes of reoptimization problems, by their hardness status with respect to minimizing transition costs while guaranteeing a good approximation for the underlying optimization problem. ⋆
Video-on-Demand (VoD) services require frequent updates in file configuration on the storage subsystem, so as to keep up with the frequent changes in movie popularity. This defines a natural reconfiguration problem in which the goal is to minimize the cost of moving from one file configuration to another. The cost is incurred by file replications performed throughout the transition. The problem shows up also in production planning, preemptive scheduling with set-up costs, and dynamic placement of Web applications. We show that the reconfiguration problem is NP-hard already on very restricted instances. We then develop algorithms which achieve the optimal cost by using servers whose load capacities are increased by O(1), in particular, by factor 1 + δ for any small 0 < δ < 1 when the number of servers is fixed, and by factor of 2 + ε for arbitrary number of servers, for some ε ∈ [0, 1). To the best of our knowledge, this particular variant of the data migration problem is studied here for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.