This work is based on a previously published hypothesis which proposed that the solid matter of the universe can be represented as a vibrational wave of energy propagating over an ether or matrix through a mechanism that scrambles the degree of duality in matter: x% localized (solid), y% delocalized (wave). The main purpose of this paper is to present a two-dimensional approximation of the three-dimensional structure of the shape of the energy distribution of an atomic orbital to propose a mechanism through which the orbital can be transported as a vibration from a point A to point B in the matrix. This process requires cycles or oscillations of mounting-dismounting-remounting in which what travels from point A to point B is the energy forming the orbital and not the solid matter that it can form. The atomic seven-dimensional f orbital of hydrogen-like atoms is used as a model to show an analogy to the transformations that it can be submitted to when transported over the matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.