Epitaxial p-i-n structures grown on native GaN substrates have been fabricated and used to extract the impact ionization coefficients in GaN. The photomultiplication method has been used to experimentally determine the impact ionization coefficients; avalanche dominated breakdown is confirmed by variable-temperature breakdown measurements. To facilitate photomultiplication measurements of both electrons and holes, the structures include a thin pseudomorphic In0.07Ga0.93N layer on the cathode side of the drift layer. Illumination with 193 nm and 390 nm UV light has been performed on diodes with different intrinsic layer thicknesses. From the measured multiplication characteristics, the impact ionization coefficients of electrons (α) and holes (β) were determined for GaN over the electric field range from 2 MV/cm to 3.7 MV/cm. The results show that for transport along the c-axis, holes dominate the impact ionization process at lower electric field strengths; the impact ionization coefficient of electrons becomes comparable to that of holes (β/α<5) for electric field strengths above 3.3 MV/cm.
The strong optical anisotropy of hyperbolic metamaterials has enabled remarkable optical behavior such as negative refraction, enhancement of the photonic density of states, anomalous scaling of resonators, and super-resolution imaging. Resonators fashioned from these optical metamaterials support the confinement of light to dimensions much smaller than the diffraction limit. These ultrasmall resonators can be used to increase light–matter interactions for new applications in photonics. Here, we present subdiffraction mid-infrared resonators based on all-semiconductor hyperbolic metamaterials. Importantly, these resonators are fully compatible with epitaxial growth techniques and can be engineered to incorporate quantum well intersubband transitions that are degenerate with the mode of the resonators, enabling an entirely new generation of quantum optoelectronic devices. The strongest optical confinement achieved is λ/33 for a free-space wavelength of 10 μm, and the measured Q-factors are in the range of 14–17. The dispersion of the resonance mode is presented through both experimental data and numerical solutions, and greater than 10% tuning of the resonance frequency (106 cm–1) is demonstrated. Radiation patterns and radiative Q-factors are also mapped out using experimental results. Finally, the resonator structures are investigated with finite element simulations and the field profile indicates the presence of a strong vertical polarization, which is essential for coupling to intersubband transitions in quantum well structures. These extreme subdiffraction resonators could be useful for engineering novel light-matter interactions and devices in the mid-infrared.
The low-temperature growth of materials that support high-performance devices is crucial for advanced semiconductor technologies such as integrated circuits built using monolithic three-dimensional (3D) integration and flexible electronics. However, low growth temperature prohibits sufficient atomic diffusion and directly leads to poor material quality, imposing severe challenges that limit device performance. Here, we demonstrate superior quality growth of 3D semiconductors at growth temperatures reduced by >200 °C by using two-dimensional (2D) materials as intermediate layers to optimize the potential energy barrier for adatom diffusion. We reveal the benefits of maintaining, but reducing, the potential field through the 2D layer, which coupled with the inert surface of the 2D material lowers the kinetic barriers, enabling long-distance atomic diffusion and enhanced material quality at lower growth temperatures. As model systems, GaN and ZnSe, grown using WSe2 and graphene intermediate layers, exhibit larger grains, preferred orientation, reduced strain, and improved carrier mobility, all at temperatures lower by >200 °C compared to direct growth as characterized by diffraction, X-ray photoelectron spectroscopy, Raman, and Hall measurements. The realization of high-performance materials using 2D intermediate layers can enable transformative technologies under thermal budget restrictions, and the 2D/3D heterostructures could enable promising heterostructures for future device designs.
High internal quantum efficiency (85%) was realized from the AlGaN-delta-GaN quantum well (QW) structure grown on a conventional AlN/sapphire template by Molecular Beam Epitaxy. The peak emission wavelength is observed at 260 nm.
The temperature dependence of the electron and hole impact ionization coefficients in GaN has been investigated experimentally. Two types of p-in diodes grown on bulk GaN substrates have been fabricated and characterized, and the impact ionization coefficients for both electrons and holes have been extracted using the photomultiplication method. Both the electron and hole impact ionization coefficients decrease as the temperature increases. The Okuto-Crowell model was used to describe the temperature dependence of the electron and hole impact ionization coefficients. Based on the measured impact ionization coefficients, the temperature dependence of the breakdown voltage of GaN non-punch through p-n diodes can be predicted; good agreement with experimentally reported results is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.