An effective ETEC vaccine would prevent hundreds of millions of diarrhea clinical cases and save nearly 100,000 lives annually. MecVax, a protein-based injectable multivalent ETEC vaccine candidate, has been shown for the first time to induce functional antibodies against both ETEC enterotoxins (STa, LT) produced by all ETEC strains and seven ETEC adhesins (CFA/I, CS1 to CS6) expressed by ETEC strains causing a majority of ETEC diarrhea clinical cases and the moderate-to-severe cases.
Using epitope- and structure-based multiepitope fusion antigen vaccinology platform, we constructed a polyvalent protein immunogen that presents antigenic domains (epitopes) of
Vibrio cholerae
toxin-coregulated pilus A, cholera toxin (CT), sialidase, hemolysin A, flagellins (B, C, and D), and peptides mimicking lipopolysaccharide O-antigen on a flagellin B backbone. Mice and rabbits immunized intramuscularly with this polyvalent protein immunogen developed antibodies to all of the virulence factors targeted by the immunogen except lipopolysaccharide. Mouse and rabbit antibodies exhibited functional activities against CT enterotoxicity, CT binding to GM
1
ganglioside, bacterial motility, and in vitro adherence of
V. cholerae
O1, O139, and non-O1/non-O139 serogroup strains. When challenged orogastrically with
V. cholerae
O1 El Tor N16961 or a non-O1/non-O139 strain, rabbits IM immunized with the immunogen showed a 2-log (99%) reduction in
V. cholerae
colonization of small intestines. Moreover, infant rabbits born to the mother immunized with the protein immunogen acquired antibodies passively and were protected from bacterial intestinal colonization (>2-log reduction), severe diarrhea (100%), and mild diarrhea (88%) after infection with
V. cholerae
O1 El Tor (N16961), O1 classical (O395), O139 (Bengal), or a non-O1/non-O139 strain. This study demonstrated that this polyvalent cholera protein is broadly immunogenic and cross-protective, and an adult rabbit colonization model and an infant rabbit passive protection model fill a gap in preclinical efficacy assessment in cholera vaccine development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.