The development of energy harvesting devices can not only effectively extend the service life of electronic equipment, but also bring convenience to equipment with power supplies that cannot be changed easily. Although the existing green energy sources can provide power to electronic devices efficiently, it is difficult to apply them to micro and small electronic devices with power on the order of mW or µW because of their demanding use conditions and large power generation. For these reasons, the energy generated by mechanical vibration and human movement has become a popular energy choice for microelectronic devices. [7-10] At present, there are several ways to convert the mechanical energy generated by vibration or moving objects into the electrical energy required by electronic equipment, including electromagnetic, [11,12] electrostatic, [13,14] and piezoelectric effect. [15,16] Compared with electromagnetic and electrostatic techniques, piezoelectric materials stand out because of their high energy conversion efficiency and strong piezoelectric sensitivity. [17,18] They can directly convert the applied mechanical stress into available electrical energy and are easy to integrate into the system, thus attracting extensive attention. These materials have been applied in many fields such as piezoelectric sensors, [19,20] actuators, [21,22] ultrasonic transducers, [23,24] and energy harvesters. [25,26] From this, we can see that piezoelectric materials show great development potential for emerging functional materials and have become the focus of future research regarding renewable clean energy and advanced energy storage materials. [27] The traditional piezoelectric device is fabricated by subtractive manufacturing. This process is not only complicated, long production cycle, low utilization rate of materials, high manufacturing cost, but it also mainly employs cutting technology such as scribing, broaching, sawing, or etching for piezoelectric devices with complex geometric shapes, which greatly limits operating conditions, density and work surroundings of piezoelectric devices. In addition, the mechanical stress generated by the traditional process will cause grain loss, strength degradation,
The {010}-faceted anatase nanocrystals with controllable crystal size and morphology were synthesized by microwave hydrothermal treatment of layered titanate nanosheet solutions. The nanostructures and formation reaction mechanism of TiO 2 nanocrystals were investigated using X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and selected-area electron diffraction. Their photocatalytic behavior and dye-sensitized solar cell (DSSC) performance were studied and compared with [111]-faceted anatase nanocrystals and anatase nanocrystals without a specific facet on the surface. There are two kinds of reactions in the formation process of the anatase nanocrystals. One is an in situ topochemical conversion reaction of layered titanate structure to anatase structure, and another is the dissolution−deposition reaction on the particle surface. The microwave hydrothermal process is suitable to control the structural conversion reaction for uniform the crystal size and morphology due to its uniform heating mechanism. The UV−visible spectrum results revealed that the bandgap of the TiO 2 nanocrystals was enhanced in the order of nanocrystal without specific facet < [111]-faceted nanocrystal < {010}-faceted nanocrystal, which corresponded to their photocatalytic activities. The DSSC performance also was enhanced in the same order, suggesting that the {010}-faceted nanocrystals are promising for the high performance DSSCs.
Perovskite solar cells (PSCs) have been attracted scientific interest due to high performance. Some researchers have suggested anomalous behavior of PSCs to the polarizations due to the ion migration or ferroelectric behavior. Experimental results and theoretical calculations have suggested the possibility of ferroelectricity in organic-inorganic perovskite. However, still no studies have been concretely discarded the ferroelectric nature of perovskite absorbers in PSCs. Hysteresis of P-E (polarization-electric field) loops is an important evidence to confirm the ferroelectricity. In this study, P-E loop measurements, in-depth structural study, analyses of dielectric behavior and the phase transitions of CH3NH3PbI3−xClx perovskite were carried out and investigated. The results suggest that CH3NH3PbI3−xClx perovskite is in an antiferroelectric phase at room temperature. The antiferroelectric phase can be switched to ferroelectric phase by the poling treatment and exhibits ferroelectric-like hysteresis P-E loops and dielectric behavior around room temperature; namely, the perovskite can generate a ferroelectric polarization under PSCs operating conditions. Furthermore, we also discuss the implications of ferroelectric polarization on PSCs charge separation.
Back electron transfer from the TiO2 electrode surface to the electrolyte is the main reason behind the low-open circuit potential (Voc) and the low-fill factor (FF) of the dye-sensitized solar cells (DSSCs). Modifications to the TiO2 electrode, fabricated using {010}-faceted TiO2 nanoparticles with six different kinds of silane, are reported to decrease the back electron transfer on the TiO2 surface. The effect of alkyl chain length of hydrocarbon silanes and fluorocarbon silanes on adsorption parameters of surface coverage and adsorption constant, interfacial resistance, and photovoltaic performances were investigated. Adsorption isotherms, impedance analysis, and photovoltaic measurements were used as the investigation techniques. The reduction of back electron transfer depended on the TiO2 surface coverage by silane, alkyl chain length, and the molecular structure of the silane. Even though Voc and FF were improved, significant reduction in short-circuit photocurrent density (Jsc) was observed after silanization because of desorption of dye during silanization. A new approach, sequential adsorption process of silane and dye, was introduced to enhance Voc and FF without lowering Jsc. Heptadecafluorodecyl trimethoxy-silane showed the highest coverage on the surface of the TiO2 and had the highest effect on the performance improvement of the DSSC, where Voc, FF, and efficiency (η) were improved by 22, 8.0, and 22%, respectively.
[111]- and {010}-faceted anatase nanocrystals with controllable crystal size and morphology were synthesized from tri-titanate H2Ti3O7 nanosheets by hydrothermal reaction. The nanostructures and the formation reaction mechanism of the obtained TiO2 nanocrystals were investigated using XRD, FE-SEM, and TEM. Furthermore, the photocatalytic and dye-sensitized solar cell (DSSC) performances of the synthesized anatase nanocrystals were also characterized. Two types of reactions occur in the formation process of the anatase nanocrystals. One is an in situ topochemical conversion reaction of the layered titanate structure to an anatase structure, and another is the dissolution-deposition reaction on the particle surface, which splits the formed nanosheet-like particles into small TiO2 nanocrystals. The surface photocatalytic activity and the DSSC performance of the anatase nanocrystals are dependent on the crystal facet exposed on the particle surface, which increases in the order of non-facet < [111]-facet < {010}-facet. The increasing order corresponds to the increasing order of the bandgap and energy level of the lowest valence band of the anatase nanocrystals. Furthermore, the facet of the anatase also affects the DSSC performance, which is enhanced in the order of non-facet < [111]-facet < {010}-facet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.