Oxidative DNA damage is generated by a variety of environmental and endogenous agents, including ionizing radiation, certain chemicals, and products of aerobic metabolism (1). 8-oxoG 1 is one of the most abundant forms of oxidative DNA damage (2). Due to its ability to form a Hoogstein-type base pair with adenine (3), 8-oxoG is miscoding (4) and mutagenic, resulting in G3 T transversions in bacterial and eukaryotic cells (5, 6). The potential harmful effects of this lesion are avoided by base excision repair. In Escherichia coli, formamidopyrimidine-DNA glycosylase (Fpg, EC 3.2.2.23) removes 8-oxoG, Me-FaPy, and several structurally related lesions from damaged DNA (7,8). Fpg is a component of the "GO system" that includes MutY, a mismatch adenine-DNA glycosylase, and MutT, an 8-oxodGTPase (9, 10); E. coli strains deficient in any of these genes are strong mutators (11).Fpg shares significant sequence homology with endonuclease VIII (Nei) of E. coli (12). Both proteins belong to a family unrelated by sequence or tertiary structure to a larger family of DNA glycosylases, for which the prototype is endonuclease III (Nth) (13,14). The substrate specificity of Fpg differs significantly from Nei (7, 8, 15) but closely resembles that of the eukaryotic 8-oxoguanine-DNA glycosylase, Ogg1, a member of the Nth family (14,16,17). Fpg also possesses AP lyase activity, nicking the phosphodiester backbone of DNA at the site of the lesion. Base excision by Fpg is followed immediately by two -elimination steps, resulting in a single nucleotide gap flanked by phosphate termini (7). A Schiff base intermediate, involving Pro-1 of the enzyme and C1Ј of the damaged nucleotide, forms early in the reaction sequence and can be reductively trapped by treatment with NaBH 4 forming a stable covalent complex (18,19). The mechanism of cleavage is similar to that of Nei (15,20), but not to that of Ogg1 where only one -elimination occurs, and the efficiency of the elimination step is very low compared with base excision (16,17).Comparing the structures of Fpg, Nei, and Ogg1 provides a unique opportunity to analyze features of damage recognition and catalysis common to DNA glycosylases/AP lyases. The presence of DNA enhances the analytic power of the model by revealing the precise nature of enzyme-DNA interactions. The structure of the human Ogg1 catalytic domain complexed to DNA has been solved (21, 22), as has the structure of E. coli Nei covalently cross-linked to DNA by NaBH 4 (23). The structure of Fpg from Thermus thermophilus HB8 (Tth-Fpg) has recently been solved in the absence of DNA (24). Although mechanisms for lesion recognition and catalysis by Fpg have been suggested on the basis of this structure and on earlier biochemical studies of E. coli Fpg (8,18,24,25), many questions remain unanswered regarding the mode of Fpg-DNA interactions and the catalytic reaction mechanism of this important DNA repair protein.To investigate the mechanisms of Fpg-DNA interactions, we have utilized NaBH 4 reduction of the Schiff base intermediate t...
contributed equally to this work Endonuclease VIII (Nei) of Escherichia coli is a DNA repair enzyme that excises oxidized pyrimidines from DNA. Nei shares with formamidopyrimidine-DNA glycosylase (Fpg) sequence homology and a similar mechanism of action: the latter involves removal of the damaged base followed by two sequential b-elimination steps. However, Nei differs signi®cantly from Fpg in substrate speci®city. We determined the structure of Nei covalently crosslinked to a 13mer oligodeoxynucleotide duplex at 1.25 A Ê resolution. The crosslink is derived from a Schiff base intermediate that precedes b-elimination and is stabilized by reduction with NaBH 4 . Nei consists of two domains connected by a hinge region, creating a DNA binding cleft between domains. DNA in the complex is sharply kinked, the deoxyribitol moiety is bound covalently to Pro1 and everted from the duplex into the active site. Amino acids involved in substrate binding and catalysis are identi®ed. Molecular modeling and analysis of amino acid conservation suggest a site for recognition of the damaged base. Based on structural features of the complex and site-directed mutagenesis studies, we propose a catalytic mechanism for Nei.
The prolyl isomerase PIN1, a critical modifier of multiple signalling pathways, is overexpressed in the majority of cancers and its activity strongly contributes to tumour initiation and progression. Inactivation of PIN1 function conversely curbs tumour growth and cancer stem cell expansion, restores chemosensitivity and blocks metastatic spread, thus providing the rationale for a therapeutic strategy based on PIN1 inhibition. Notwithstanding, potent PIN1 inhibitors are still missing from the arsenal of anti-cancer drugs. By a mechanism-based screening, we have identified a novel covalent PIN1 inhibitor, KPT-6566, able to selectively inhibit PIN1 and target it for degradation. We demonstrate that KPT-6566 covalently binds to the catalytic site of PIN1. This interaction results in the release of a quinone-mimicking drug that generates reactive oxygen species and DNA damage, inducing cell death specifically in cancer cells. Accordingly, KPT-6566 treatment impairs PIN1-dependent cancer phenotypes in vitro and growth of lung metastasis in vivo.
We present a fast and effective covalent docking approach suitable for large-scale virtual screening (VS). We applied this method to four targets (HCV NS3 protease, Cathepsin K, EGFR, and XPO1) with known crystal structures and known covalent inhibitors. We implemented a customized "VS mode" of the Schrödinger Covalent Docking algorithm (CovDock), which we refer to as CovDock-VS. Known actives and target-specific sets of decoys were docked to selected X-ray structures, and poses were filtered based on noncovalent protein-ligand interactions known to be important for activity. We were able to retrieve 71%, 72%, and 77% of the known actives for Cathepsin K, HCV NS3 protease, and EGFR within 5% of the decoy library, respectively. With the more challenging XPO1 target, where no specific interactions with the protein could be used for postprocessing of the docking results, we were able to retrieve 95% of the actives within 30% of the decoy library and achieved an early enrichment factor (EF1%) of 33. The poses of the known actives bound to existing crystal structures of 4 targets were predicted with an average RMSD of 1.9 Å. To the best of our knowledge, CovDock-VS is the first fully automated tool for efficient virtual screening of covalent inhibitors. Importantly, CovDock-VS can handle multiple chemical reactions within the same library, only requiring a generic SMARTS-based predefinition of the reaction. CovDock-VS provides a fast and accurate way of differentiating actives from decoys without significantly deteriorating the accuracy of the predicted poses for covalent protein-ligand complexes. Therefore, we propose CovDock-VS as an efficient structure-based virtual screening method for discovery of novel and diverse covalent ligands.
␣-Glucuronidases cleave the ␣-1,2-glycosidic bond between 4-O-methyl-D-glucuronic acid and short xylooligomers as part of the hemicellulose degradation system. To date, all of the ␣-glucuronidases are classified as family 67 glycosidases, which catalyze the hydrolysis via the investing mechanism. Here we describe several high resolution crystal structures of the ␣-glucuronidase (AguA) from Geobacillus stearothermophilus, in complex with its substrate and products. In the complex of AguA with the intact substrate, the 4-O-methyl-D-glucuronic acid sugar ring is distorted into a half-chair conformation, which is closer to the planar conformation required for the oxocarbenium ion-like transition state structure. In the active site, a water molecule is coordinated between two carboxylic acids, in an appropriate position to act as a nucleophile. From the structural data it is likely that two carboxylic acids, Asp 364 and Glu 392 , activate together the nucleophilic water molecule. The loop carrying the catalytic general acid Glu 285 cannot be resolved in some of the structures but could be visualized in its "open" and "closed" (catalytic) conformations in other structures. The protonated state of Glu 285 is presumably stabilized by its proximity to the negative charge of the substrate, representing a new variation of substrate-assisted catalysis mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.