Silver nanoparticles have been a recent focus of many researchers in dentistry, and their potential uses and benefits have drawn attention in dentistry and medicine. The fabrication and utilization of nanoscale substances and structures are at the core of the rapidly developing areas of nanotechnology. They are often used in the dental industry because they prevent bacteria from making nanoparticles, oxides, and biofilms. They also stop the metabolism of bacteria. Silver nanoparticles (AgNPs) are a type of zero-dimensional material with different shapes. Dentistry has to keep up with changing patient needs and new technology. Silver nanoparticles (AgNPs) can be used in dentistry for disinfection and preventing infections in the oral cavity. One of the most interesting metallic nanoparticles used in biomedical applications is silver nanoparticles (AgNPs). The dental field has found promising uses for silver nanoparticles (AgNPs) in the elimination of plaque and tartar, as well as the elimination of bacterial and fungal infections in the mouth. The incorporation of AgNPs into dental materials has been shown to significantly enhance patients’ oral health, leading to their widespread use. This review focuses on AgNP synthesis, chemical properties, biocompatibility, uses in various dental fields, and biomaterials used in dentistry. With an emphasis on aspects related to the inclusion of silver nanoparticles, this descriptive review paper also intends to address the recent developments of AgNPs in dentistry.
Objective: We evaluate the penetration and adaptation of highly viscous zinc-reinforced glass ionomer cement (ZRGIC), using a scanning electron microscope (SEM), when applied under various contaminated conditions on grooves and fissures of primary second molars. Materials and Methods: A total of 40 extracted human primary second molars were randomly assigned into five groups (8 teeth each), with different surface conditions (conditioned with 40% polyacrylic acid, dry condition, water contamination, saliva contamination, or saliva contamination and air-drying) on the occlusal surface before placement of zinc-reinforced highly viscous glass ionomer cement with the finger-press technique. After sectioning the teeth, they were subjected to SEM analysis, where four in each group underwent aging by thermocycling and the other four were without aging. ANOVA tests, post hoc analysis, and unpaired t-tests were used for statistical analyses. Results: There was a significant statistical difference in the sealant penetration in the non-aging group, but in the aging group, there was no significant statistical difference in the sealant penetration. On other hand, a significant statistical difference was found in the adaptation between all the groups (p < 0.05). Highly viscous zinc-reinforced glass ionomer fissure sealants have better fissure penetration and more intimate adaptation under fissures conditioned with 40% polyacrylic acid and dry surface fissures with no contamination. However, the best penetration and retention after aging were under contaminated fissures with a shiny layer of saliva. Conclusions: Based on this study, we conclude that ZRGIC, a highly viscous fluoride-releasing cement, effectively seals fissures by interfering with food lodgment and protecting teeth from caries. We also conclude from this research that although the contaminated surfaces are not fully effective in penetrating and adapting the GIC to the tooth surface, they are still adequate for the brief period that will delay the carious process. It is advisable to restore the fissures with the minimal technique of sensitive fluoride-releasing GIC, particularly in young, uncooperative children, rather than leaving a caries-prone environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.