Cyclic nucleotides are major intracellular mediators in the signal transduction events in synaptic neurotransmission of the CNS. Intracellular Ca2+ is known to regulate adenylyl cyclase (AC) in a calmodulin (CaM)-dependent manner, and guanylyl cyclase (GC), in an indirect manner through CaM-sensitive nitric oxide synthase. To ascertain the physiological significance of cyclic nucleotide second messenger systems, we have localized the mRNAs encoding AC, GC, and CaM in the rat brain by in situ hybridization using 35S-labeled RNA probes. The AC mRNA is widely distributed throughout the brain; strong hybridization signal was observed in the granular layers of the cerebellum, in the pyramidal and granule cells of the hippocampus, and in the olfactory system. These AC mRNA localizations are compatible with the distribution of Ca2+/CaM-sensitive AC activities. In contrast to AC mRNA distribution, GC mRNA has a more limited distribution. Significant signals were observed in the striatum, in the pyramidal and granule cells of the hippocampus, in the olfactory system, in the inferior and superior colliculus, in the Purkinje cells of the cerebellum, in the locus coeruleus, and in many pyramidal cells in the layers II-III and V of the cerebral cortex, and mainly, in the occipital cortex. In some discrete brain regions, a close correlation was found between enzyme activity and mRNA hybridization signal of GC. The distinct distribution of AC and GC mRNAs suggests that different cyclic nucleotide second messenger systems have specialized functions. On the other hand, CaM mRNA was colocalized with the AC and GC mRNA, but its distribution was more abundant and specific for neuronal cells, since there was little hybridization signal with CaM probe in neuronal fiber regions such as the corpus callosum and the anterior commissure. The high expression of CaM mRNA in neuronal cells is in agreement with its biochemical role in the regulation of various enzymes. Results of the present study should help in analyzing the role of cyclic nucleotides and CaM in physiological and pathological situations in the CNS.
A 400 bp fragment of the spermatogonia-specific Stra8 locus was sufficient to direct gene expression to the germinal stem cells in transgenic mice. A fractionation procedure was devised, based on immunomagnetic sorting of cells in which the promoter drives the expression of a surface functionally neutral protein tag. The purified cells expressed the known molecular markers of spermatogonia Rbm, cyclin A2 and EP-Cam, and the β 1 -and α 6 -integrins characteristic of the stem cell fraction. A 700-fold enrichment in stem cells was determined by the ability of the purified fractions to re-establish spermatogenesis in germ cell-depleted recipient testes.
Complementary DNA clones corresponding to the 70 and 82 kDa subunits of solubleguanylyl cyclase from human adult brain have been isolated and sequenced. Their respective open reading frames correspond to 619 amino acids (M, 70,469) and 7 17 amino acids (M, 81,324). Southern blots of human genomic DNA using these clones as probes give patterns which might be compatible with the presence of more than one copy per gene, or pseudogenes, for each subunit in the human genomc. Comparison of the prouin sequence of the large subunit from adult brain wuilh the subunit cloned from human fetal brain (Hanencck. C.. Wedcl, B., Koesling, D., Malckewitz, J., Bahme, E. and Schultz, G. (1991) FEDS Lett. 292,217-222) revealed only 34% homology. This result demonstrates the existence of a novel large subunit isoform for soluble guanylyl cyclasc in human tissues.Soluble guanylale cyclase; Human brain; cDNA library
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.