The AKT signaling pathway has been identified as an important target for cancer therapy. Among small-molecule inhibitors of AKT that have shown tremendous potential in inhibiting cancer, MK-2206 is a highly potent, selective and orally active allosteric inhibitor. Promising preclinical anticancer results have led to entry of MK-2206 into Phase I/II clinical trials. Despite such importance, the exact binding mechanism and the molecular interactions of MK-2206 with human AKT are not available. The current study investigated the exact binding mode and the molecular interactions of MK-2206 with human AKT isoforms using molecular docking and (un)binding simulation analyses. The study also involved the docking analyses of the structural analogs of MK-2206 to AKT1 and proposed one as better inhibitor. The Dock was used for docking simulations of MK-2206 into the allosteric site of AKT isoforms. The Ligplot+ was used for analyses of polar and hydrophobic interactions between AKT isoforms and the ligands. The MoMa-LigPath web server was used to simulate the ligand (un)binding from the binding site to the surface of the protein. In the docking and (un)binding simulation analyses of MK-2206 with human AKT1, the Trp-80 was the key residue and showed highest decrease in the solvent accessibility, highest number of hydrophobic interactions, and the most consistent involvement in all (un)binding simulation phases. The number of molecular interactions identified and calculated binding energies and dissociation constants from the co-complex structures of these isoforms, clearly explained the varying affinity of MK-2206 towards these isoforms. The (un)binding simulation analyses identified various additional residues which despite being away from the binding site, play important role in initial binding of the ligand. Thus, the docking and (un)binding simulation analyses of MK-2206 with AKT isoforms and its structure analogs will provide a suitable model for studying drug-protein interaction and will help in designing better drugs.
β-thalassemia is an inherited blood disorder in which the body cannot produce hemoglobin normally. Since patients with this condition receive blood transfusions regularly, iron builds up primarily in organs such as the heart, liver and endocrine glands. Accumulation of iron in the organs necessitates chelation therapy. These patients must visit the hospital frequently to assess and follow up on their health condition. Physician intervention is required after each regular assessment to adjust the treatment. Lifelong healthcare support using a web-based expert system with a quick response code is designed for β-thalassemia management in order to deliver benefits to patients, physicians, and other healthcare providers. The aim of this study is to implement a web-based expert system for β-thalassemia management in order to provide treatment recommendations and support the lifelong healthcare of patients. The system provides patient-related details, such as medical history, medicines, and appointments, in real-time. It has been also tested in real-life cases and shown to enhance β-thalassemia management.
We describe in this report a case of a 6-years-old female who presented at the age of 1 month with a mucocutaneous bleeding and suspected thrombocytopenia. The patient's condition was refractory to the known idiopathic thrombocytopenic purpura treatments and congenital form of Thrombocytopenia was suspected following the delivery of a male sibling with the same phenotype. The patient also manifested fair colored hair and skin relative to her family however she did not have any detectable neurologic or other immunologic abnormalities. In order to further understand this condition, we have used whole-exome sequencing of the patient's DNA as well as her father's with the assumption that her condition is transmitted in an autosomal recessive manner. We have identified a missense change c.659C>G (p.Thr220Arg) in the SBF2 (also known as MTMR13) gene that causes a mutation in the DENN domain of the protein. This mutation was validated by traditional Sanger sequencing and analyzed in the remaining family members were it was found to segregate in the homozygous state in the affected siblings and in the heterozygous state in both parents. This novel mutation in the DENN domain of SBF2 maybe interfering with its putative association with the Rab family of small GTPases which are important mediators of vesicle transport and membrane trafficking. In conclusion, we have identified a novel mutation that is associated with severe thrombocytopenia. The fact that this mutation is found in SBF2 gene may indicate that the underlying cause of thrombocytopenia in our patient is either a new variant form of Griscelli syndrome (through the Rab GTPases action) or a variant Charcot-Marie-Tooth type 4 disease as SBF2 truncating mutations were previously identified in sufferers of this disease. This finding will help to accurately diagnose and classify similar cases of congenital thrombocytopenia and provide further proof to the power of whole-exome sequencing in personalizing patients management from the point of diagnosis to treatment and followup.
This study aimed at the identification of the spectrum of mutations in patients with β-thalassemia (β-thal) in the western province of Saudi Arabia. Screening for the mutations was done using the polymerase chain reaction-amplification refractory mutation system (PCR-ARMS) technique to test for 12 mutations, and direct automated DNA sequencing for the unknown samples. The study included 172 patients; of these 15 patients had sickle cell anemia and one Hb S [β6(A3)Glu→Val, GAG>GTG]/β-thal. A total of 23 mutations were identified to cause the disease in the western area. Seven common mutations were responsible for the β-thal alleles in 78% of patients and could be detected by the ARMS technique: IVS-II-1 (G>A), IVS-I-110 (G>A), IVS-I-5 (G>C), codon 39 (C>T), codon 26 (G>A) [Hb E or β26(B8)Glu→Lys, GAG>AAG], frameshift codons (FSC) 8/9 (+G), and IVS-I-1 (G>A). DNA sequencing of uncharacterized alleles detected eight less common mutations: FSC 41/42 (-TCTT), IVS-I 25 bp deletion, codon 37 (G>A), FSC 44 (-C), Cap site +1 (A>C), IVS-I-6 (T>C), FSC 5 (-CT) and IVS-I-1 (G>T), and eight rare mutations: -87 (C>G), initiation codon -1 (T>G), codon 15 (G>A), FSC 16 (-C), FSC 20/21 (+G), codon 27 (G>A), IVS-I-130 (G>C) and IVS-II-837 (A>C). Four alleles were normal by DNA sequencing. Genetic heterogeneity was observed in this study, 10 mutations were of Asian or Asian/Indian origin, two were Kurdish, one Chinese, one Turkish, one Saudi, and the remainder were of Mediterranean origin. The presence of a large population of immigrants in the western province is responsible for the great heterogeneity at the molecular level, and for the difference observed in the frequencies of mutations from those reported in the eastern province of Saudi Arabia. Screening for β-thal mutations using PCR-ARMS for the seven most frequent mutations in the Saudi population followed by DNA sequencing of the unknown alleles could be useful for the implementation of a strategy for carrier detection and preimplantation genetic diagnosis in high risk families.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.