Markov chain Monte Carlo is a method of producing a correlated sample in order to estimate features of a complicated target distribution via simple ergodic averages. A fundamental question in MCMC applications is when should the sampling stop? That is, when are the ergodic averages good estimates of the desired quantities? We consider a method that stops the MCMC sampling the first time the width of a confidence interval based on the ergodic averages is less than a user-specified value. Hence calculating Monte Carlo standard errors is a critical step in assessing the output of the simulation. In particular, we consider the regenerative simulation and batch means methods of estimating the variance of the asymptotic normal distribution. We describe sufficient conditions for the strong consistency and asymptotic normality of both methods and investigate their finite sample properties in a variety of examples.
The goal of this expository paper is to describe conditions which guarantee a central limit theorem for functionals of general state space Markov chains. This is done with a view towards Markov chain Monte Carlo settings and hence the focus is on the connections between drift and mixing conditions and their implications. In particular, we consider three commonly cited central limit theorems and discuss their relationship to classical results for mixing processes. Several motivating examples are given which range from toy one-dimensional settings to complicated settings encountered in Markov chain Monte Carlo.
Current reporting of results based on Markov chain Monte Carlo computations
could be improved. In particular, a measure of the accuracy of the resulting
estimates is rarely reported. Thus we have little ability to objectively assess
the quality of the reported estimates. We address this issue in that we discuss
why Monte Carlo standard errors are important, how they can be easily
calculated in Markov chain Monte Carlo and how they can be used to decide when
to stop the simulation. We compare their use to a popular alternative in the
context of two examples.Comment: Published in at http://dx.doi.org/10.1214/08-STS257 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.