Summary
Paroxysmal nocturnal haemoglobinuria (PNH) is an uncommon, acquired disorder of blood cells caused by mutation of the phosphatidylinositol glycan class A (PIG‐A) gene. The disease often manifests with haemoglobinuria, peripheral blood cytopenias, and venous thrombosis. The natural history of PNH has been documented in retrospective series; but there has only been one study that correlated the more sensitive and specific flow cytometric assays that have become available in the last decade with severe symptoms associated with PNH. In a retrospective analysis of 49 consecutive patients with PNH evaluated at Johns Hopkins, large PNH clones were associated with an increased risk for thrombosis as well as haemoglobinuria, abdominal pain, oesophageal spasm, and impotence. Of the 14 (29%) patients that developed thrombosis, nine died; six of these from complications related to thromboses. According to logistic regression modelling, for a 10% change in PNH clone size, the odds ratio for risk of thrombosis was estimated to be 1·64. No patient with <61% PNH granulocytes developed a thrombosis, whereas 12 of 22 patients (54·5%) with ≥61% PNH granulocytes manifested with thrombosis. These data not only confirm that the size of the PNH clone correlates with the risk for thrombosis, but they also suggest a correlation of PNH clone size to more symptomatic PNH.
Neuronal nitric oxide synthase (nNOS) neurons kill adjacent neurons through the action of NMDA-glutamate receptor activation, although they remain relatively resistant to the toxic effects of NMDA and NO. The molecular basis of the resistance of nNOS neurons to toxic insults is unknown. To begin to understand the molecular mechanisms of the resistance of nNOS neurons, we developed a pheochromacytoma-derived cell line (PC12) that is resistant to the toxic effects of NO. We found through serial analysis of gene expression (SAGE) that manganese superoxide dismutase (MnSOD) is enriched in the NO-resistant PC12 cell-derived line (PC12-R). Antisense MnSOD renders PC12-R cells sensitive to NO toxicity and increases the sensitivity to NO in the parental, NO-sensitive PC12 line (PC12-S). Adenoviral transfer of MnSOD protects PC12-S cells against NO toxicity. We extended these studies to cortical cultures and showed that MnSOD is enriched in nNOS neurons and that antisense MnSOD renders nNOS neurons susceptible to NMDA neurotoxicity, although it has little effect on the overall susceptibility of cortical neurons to NMDA toxicity. Overexpression of MnSOD provides dramatic protection against NMDA and NO toxicity in cortical cultures, but not against kainate or AMPA neurotoxicity. Furthermore, nNOS neurons from MnSOD -/- mice are markedly sensitive to NMDA toxicity. Adenoviral transfer of MnSOD to MnSOD-/- cultures restores resistance of nNOS neurons to NMDA toxicity. Thus, MnSOD is a major protective protein that appears to be essential for the resistance of nNOS neurons in cortical cultures to NMDA mediated neurotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.