Nowadays spoofing detection is one of the priority research areas in the field of automatic speaker verification. The success of Automatic Speaker Verification Spoofing and Countermeasures (ASVspoof) Challenge 2015 confirmed the impressive perspective in detection of unforeseen spoofing trials based on speech synthesis and voice conversion techniques. However, there is a small number of researches addressed to replay spoofing attacks which are more likely to be used by non-professional impersonators. This paper describes the Speech Technology Center (STC) anti-spoofing system submitted for ASVspoof 2017 which is focused on replay attacks detection. Here we investigate the efficiency of a deep learning approach for solution of the mentioned-above task. Experimental results obtained on the Challenge corpora demonstrate that the selected approach outperforms current state-of-the-art baseline systems in terms of spoofing detection quality. Our primary system produced an EER of 6.73% on the evaluation part of the corpora which is 72% relative improvement over the ASVspoof 2017 baseline system.
This paper describes the Speech Technology Center (STC) antispoofing systems submitted to the ASVspoof 2019 challenge 1 . The ASVspoof2019 is the extended version of the previous challenges and includes 2 evaluation conditions: logical access use-case scenario with speech synthesis and voice conversion attack types and physical access use-case scenario with replay attacks. During the challenge we developed anti-spoofing solutions for both scenarios. The proposed systems are implemented using deep learning approach and are based on different types of acoustic features. We enhanced Light CNN architecture previously considered by the authors for replay attacks detection and which performed high spoofing detection quality during the ASVspoof2017 challenge. In particular here we investigate the efficiency of angular margin based softmax activation for training robust deep Light CNN classifier to solve the mentioned-above tasks. Submitted systems achieved EER of 1.86% in logical access scenario and 0.54% in physical access scenario on the evaluation part of the Challenge corpora. High performance obtained for the unknown types of spoofing attacks demonstrates the stability of the offered approach in both evaluation conditions.
This paper presents the Speech Technology Center (STC) systems submitted to Automatic Speaker Verification Spoofing and Countermeasures (ASVspoof) Challenge 2015. In this work we investigate different acoustic feature spaces to determine reliable and robust countermeasures against spoofing attacks. In addition to the commonly used front-end MFCC features we explored features derived from phase spectrum and features based on applying the multiresolution wavelet transform. Similar to state-of-the-art ASV systems, we used the standard TV-JFA approach for probability modelling in spoofing detection systems. Experiments performed on the development and evaluation datasets of the Challenge demonstrate that the use of phase-related and wavelet-based features provides a substantial input into the efficiency of the resulting STC systems. In our research we also focused on the comparison of the linear (SVM) and nonlinear (DBN) classifiers. .
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.