The synthesis and characterisation of the new N,O-phenol-pyrazole pro-ligand, (pz)LH, comprising a pyrazole covalently linked to an o,p-di-tert-butyl-substituted phenol, are herein reported. In CH(2)Cl(2) at room temperature, the cyclic voltammogram (CV) of (pz)LH exhibits a quasi-reversible one-electron oxidation process (at E(1/2) = 0.66 V vs. Fc(+)/Fc) attributed to the formation of the phenoxyl radical cation [(pz)LH]˙(+). (pz)LH reacts with M(II)(BF(4))(2) (M = Cu, Co) in a 2:1 ratio to afford the bis-Cu(pz)L(2) (1) and tris-Co(pz)L(3) (2) complexes respectively. The X-ray structure of 1 reveals a Cu(II) ion in a square-planar trans-Cu(II)-N(2)O(2) coordination environment whereas that of 2 consists of a Co(III) ion with an octahedral mer-N(3)O(3) coordination sphere; formed by the chelation of two (in 1) or three (in 2) N,O-bidentate phenolate ligands respectively. Both structures are preserved in CH(2)Cl(2) solution, as revealed by their NMR (for 2) and EPR (for 1) data. The CVs of 1 and 2 consist of two (at E(1/2): 0.43 and 0.58 V vs. Fc(+)/Fc) and three (E(1/2) = 0.12, 0.54 and 0.89 V vs. Fc(+)/Fc) reversible one-electron oxidation processes, respectively. The one-electron electrochemical oxidation of 1 and 2 produces the oxidised species, 1(+) and 2(+), which are stable for several hours at room temperature under inert atmosphere in CH(2)Cl(2). The UV/vis and EPR data obtained for 1(+) and 2(+) are unambiguously consistent with the latter being formulated as Cu(II)- and Co(III)-phenoxyl radical complexes, as [Cu(II)((pz)L˙)((pz)L)](+) and [Co(III)((pz)L˙)((pz)L)(2)](+) respectively.
Herein, the N-R substituted N,O-phenol-pyrazole redox-active pro-ligands, (R)LH (R = Me, Pr) are reported together with their corresponding bis-Cu(R)L(2) complexes (2 and 3, respectively). The latter are reversibly oxidised to the corresponding stable Cu(II)-phenoxyl radical complexes 2(+) and 3(+). The properties of the tetrahedrally distorted complexes 2 and 3 (and those of 2(+) and 3(+)) are being compared to those of the square-planar H-bonded complex 1 (bis-Cu(H)L(2)) and those of 1(+). These studies have permitted H-bonding and steric effects on the redox, spectroscopic and chemical properties of Cu(II)-phenolate and Cu(II)-phenoxyl radical species to be established.
Antimicrobial peptides (AMPs) appear to be good candidates for the development of new antibiotic drugs. We describe here the synthesis of peptidomimetic compounds that are based on a benzodiazepine scaffold flanked with positively charged and hydrophobic amino acids. These compounds mimic the essential properties of cationic AMPs. The new design possesses the benzodiazepine scaffold that is comprised of two glycine amino acids and which confers flexibility and aromatic hydrophobic 'back', and two arms used for further synthesis on solid phase for incorporation of charged and hydrophobic amino acids. This approach allowed us a better understanding of the influence of these features on the antimicrobial activity and selectivity. A novel compound was discovered which has MICs of 12.5 µg/ml against Staphylococcus aureus and 25 µg/ml against Escherichia coli, similar to the well-known antimicrobial peptide MSI-78. In contrast to MSI-78, the above mentioned compound has lower lytic effect against mammalian red blood cells. These peptidomimetic compounds will pave the way for future design of potent synthetic mimics of AMPs for therapeutic and biomedical applications.
The diimino-diphenolato neutral square-planar Ni(ii) complex, NiL2, is readily oxidised with 2 equiv. of Ag[SbF6], to produce an unprecedented octahedral Ni(ii) tris(phenoxyl) radical complex, [Ni(L˙)3][SbF6]2. This study reveals, for the first time, the X-ray structure of a metal-tri-phenoxyl radical complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.