When faced with situations where many people talk at once, individuals can employ different listening strategies to deal with the cacophony of speech sounds and to achieve different goals. In this fMRI study, we investigated how the pattern of neural activity is affected by the type of attention applied to speech in a simulated “cocktail party.” Specifically, we compared brain activation patterns when listeners “attended selectively” to only one speaker and ignored all others, versus when they “distributed their attention” and followed several concurrent speakers. Conjunction analysis revealed a highly overlapping network of regions activated for both types of attention, including auditory association cortex (bilateral STG/STS) and frontoparietal regions related to speech processing and attention (bilateral IFG/insula, right MFG, left IPS). Activity within nodes of this network, though, was modulated by the type of attention required as well as the number of competing speakers. Auditory and speech-processing regions exhibited higher activity during distributed attention, whereas frontoparietal regions were activated more strongly during selective attention. These results suggest a common “attention to speech” network, which provides the computational infrastructure to deal effectively with multi-speaker input, but with sufficient flexibility to implement different prioritization strategies and to adapt to different listener goals.
High-level cognitive capacities that serve communication, reasoning, and calculation are essential for finding our way in the world. But whether and to what extent these complex behaviors share the same neuronal substrate are still unresolved questions. The present study separated the aspects of logic from language and numerosity-mental faculties whose distinctness has been debated for centuries-and identified a new cytoarchitectonic area as correlate for an operation involving logical negation. A novel experimental paradigm that was implemented here in an RT/fMRI study showed a single cluster of activity that pertains to logical negation. It was distinct from clusters that were activated by numerical comparison and from the traditional language regions. The localization of this cluster was described by a newly identified cytoarchitectonic area in the left anterior insula, ventro-medial to Broca's region. We provide evidence for the congruence between the histologically and functionally defined regions on multiple measures. Its position in the left anterior insula suggests that it functions as a mediator between language and reasoning areas.
Managing attention in multispeaker environments is a challenging feat that is critical for human performance. However, why some people are better than others in allocating attention appropriately remains highly unknown. Here, we investigated the contribution of two factors-working memory capacity (WMC) and professional experience-to performance on two different types of attention task: selective attention to one speaker and distributed attention among multiple concurrent speakers. We compared performance across three groups: individuals with low (n = 20) and high (n = 25) WMC, and aircraft pilots (n = 24), whose profession poses extremely high demands for both selective and distributed attention to speech. Results suggests that selective attention is highly effective, with good performance maintained under increasingly adverse conditions, whereas performance decreases substantially with the requirement to distribute attention among a larger number of speakers. Importantly, both types of attention benefit from higher WMC, suggesting reliance on some common capacity-limited resources. However, only selective attention was further improved in the pilots, pointing to its flexible and trainable nature, whereas distributed attention seems to suffer from more fixed and severe processing bottlenecks.
Our goal in this study was to behaviorally characterize the property (or properties) that render negative quantifiers more complex in processing compared to their positive counterparts (e.g. the pair few/many). We examined two sources: (i) negative polarity; (ii) entailment reversal (aka downward monotonicity). While negative polarity can be found in other pairs in language such as dimensional adjectives (e.g. the pair small/large), only in quantifiers does negative polarity also reverse the entailment pattern of the sentence. By comparing the processing traits of negative quantifiers with those of non-monotone expressions that contain negative adjectives, using a verification task and measuring reaction times, we found that negative polarity is cognitively costly, but in downward monotone quantifiers it is even more so. We therefore conclude that both negative polarity and downward monotonicity contribute to the processing complexity of negative quantifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.