Transglutaminases are a family of enzymes that play an important role in tissue remodeling by catalyzing covalent cross-links between proteins of the extracellular matrix. Elevated activity of transglutaminase was shown at the boundaries of invading tumors, in association with angiogenesis, in stabilization of atherosclerotic plaques, and in generation of blood clots. The aim of this work was to develop a low molecular weight substrate of transglutaminase that could serve for noninvasive magnetic resonance and optical mapping of transglutaminase-mediated cross-linking activity. A 2 kDa contrast material was generated which showed crosslinking by either tissue transglutaminase or factor XIII in the context of multicellular tumor spheroids or fibrin clots, respectively. Successful detection by nuclear magnetic resonance microscopy of transglutaminase-mediated cross-linking of the contrast material to MCF7 multicellular spheroids provides hope that this approach could potentially be developed for clinical demarcation of sites of transglutaminase activity. (Cancer Res 2005; 65(4): 1369-75)
Transglutaminases, including factor XIII and tissue transglutaminase, participate in multiple extracellular processes associated with remodeling of the extracellular matrix during wound repair, blood clotting, tumor progression and fibrosis of ischemic injuries. The aim of this work was to evaluate a novel substrate analog for transglutaminase optimized by molecular modeling calculations (DCCP16), which can serve for molecular imaging of transglutaminase activity by magnetic resonance imaging and by near-infrared imaging. Experimental data showed covalent binding of Gd-DCCP16 and DCCP16-IRIS Blue to human clots, to basement membrane components and to casein in purified systems as well as in three-dimensional multicellular spheroids. In vivo, DCCP16 showed enhancement with a prolonged retention in clots and tumors, demonstrating the ability to detect both factor XIII and tissue transglutaminase mediated covalent binding of the contrast material.
Supplementary Figure 1 Legend from Development of Magnetic Resonance Imaging Contrast Material for <i>In vivo</i> Mapping of Tissue Transglutaminase Activity
Supplementary Figure 1 Legend from Development of Magnetic Resonance Imaging Contrast Material for <i>In vivo</i> Mapping of Tissue Transglutaminase Activity
<div>Abstract<p>Transglutaminases are a family of enzymes that play an important role in tissue remodeling by catalyzing covalent cross-links between proteins of the extracellular matrix. Elevated activity of transglutaminase was shown at the boundaries of invading tumors, in association with angiogenesis, in stabilization of atherosclerotic plaques, and in generation of blood clots. The aim of this work was to develop a low molecular weight substrate of transglutaminase that could serve for noninvasive magnetic resonance and optical mapping of transglutaminase-mediated cross-linking activity. A 2 kDa contrast material was generated which showed cross-linking by either tissue transglutaminase or factor XIII in the context of multicellular tumor spheroids or fibrin clots, respectively. Successful detection by nuclear magnetic resonance microscopy of transglutaminase-mediated cross-linking of the contrast material to MCF7 multicellular spheroids provides hope that this approach could potentially be developed for clinical demarcation of sites of transglutaminase activity.</p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.