In order to design and development efficient III-nitride based optoelectronic devices, technological processes require a major effort. We propose here a detailed review focussing on the etching procedure as a key step for enabling high date rate performances. In our reported research activity, dry etching of an InGaN/GaN heterogeneous structure was investigated by using an inductively coupled plasma reactive ion etching (ICP-RIE). We considered different combinations of etch mask (Ni, SiO2, resist), focussing on the optimization of the deep etching process. A GaN mesa process with an etching depth up to 6 µm was performed in Cl2/Ar-based plasmas using ICP reactors for LEDs dimen sions ranging from 5 to 150 µm². Our strategy was directed toward the mesa formation for vertical-type diode applications, where etch depths are relatively large. Etch characteristics were studied as a function of ICP parameters (RF power, chamber pressure, fixed total flow rate). Surface morphology, etch rates and sidewall profiles observed into InGaN/GaN structures were compared under different types of etching masks. For deep etching up to few microns into the GaN template, we state that a Ni or SiO2 mask is more suitable to obtain a good selectivity and vertical etch profiles. The optimized etch rate was about 200nm/min under moderate ICP conditions. We applied these conditions for the fabrication of micro/nano LEDs dedicated to LiFi applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.