The impact of abiotic and biotic factors (rainfall, temperature, host plant and natural enemies) on population dynamics of the Plutella xylostella L. diamondback moth was investigated. The experiments were conducted during the rainy and dry seasons for two years (June 2009-April 2011) on unsprayed cabbage plots in Malika (Senegal). Every 10 days, 10 cabbages were randomly selected. Plutella xylostella larvae, pupae and parasitoid cocoons were recorded on each plant. Before each sampling, the diameters and ages of plants were recorded. Temperature and rainfall were also recorded during this study. Larvae and pupae of P. xylstella were higher for the dry season than the rainy season. There was a negative correlation between temperature and P. xylostella populations, and a strong relationship between P. xylostella populations and the age of cabbages. Females oviposited on young cabbages where the presence of young larvae was important, whereas older immature stages were mainly found in older cabbage plants. Parasitoid populations were higher for the dry season than the rainy season. High temperatures did not increase the pest populations and parasitism rate. There was no effect found on pest, plants and natural enemies due to rainfall. There was a positive correlation between pest populations and parasitism. Four Hymenoptera species were found: Oomyzus sokolowskii, Apanteles litae, Cotesia plutellae and Brachymeria citrae, but they were not efficient to control the P. xylostella populations. These results are important for understanding the factors that promote or inhibit pest populations and their natural enemies, and therefore essential for effective crop protection. (Résumé d'auteur
Diamondback moth (DBM), Plutella xylostella (L.), remains a major pest of brassica crops worldwide. Chemical control of this pest remains difficult due to the rapid development of resistance to insecticides and to their effect on natural enemies. The objective of this study was to assess the toxicity of Bacillus thuringiensis (Bt), neem oil and methamidophos on larvae of P. xylostella under laboratory conditions. Leaf-dip bioassay for DBM larvae was used to assess mortality. For each treatment, three doses (low, medium and high) were applied on cabbage leaves and presented to third instar larvae. Larval mortality was performed every 24 hours for a period of eight days. The application of the three dosages of Biobit was more effective against P. xylostella larvae when compared to the other treatments. However, there was no significant difference in larval mortality when all three doses of Biobit were tested compared to the control. Methamidophos was the least toxic treatments with high dosage recording the lowest mortality rate of 52.5%. These results showed that Btbased biopesticides and neem extracts could be of help, but their deployment should be part of an integrated pest management package, which recognizes the constraints of farmers while addressing the requirement to control of P. xylostella populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.