Recent work has led to the identification of several susceptibility genes for autism spectrum disorder (ASD) and an increased appreciation of the importance of rare and de novo mutations. Some of the mutations may be very hard to detect using current strategies, especially if they are located in regulatory regions. We present a new approach to identify functional mutations that exploit the fact that many rare mutations disrupt the expression of genes from a single parental chromosome. The method incorporates measurement of the relative expression of the two copies of a gene across the genome using single nucleotide polymorphism arrays. Allelic expression has been successfully used to study common regulatory polymorphisms; however, it has not been implemented as a screening tool for rare mutation. We tested the potential of this approach by screening for monoallelic expression in lymphoblastoid cell lines derived from a small ASD cohort. After filtering regions shared across multiple samples, we identified genes showing monoallelic expression in specific ASD samples. Validation by quantitative sequencing demonstrated that the genes (or only part of them) are monoallelic expressed. The genes included both previously suspected risk factors for ASD and novel candidates. In one gene, named autism susceptibility candidate 2 (AUTS2), we identified a rare duplication that is likely to be the cause of monoallelic expression. Our results demonstrate the ability to identify rare regulatory mutations using genome-wide allelic expression screens, capabilities that could be expanded to other diseases, especially those with suspected involvement of rare dominantly acting mutations.
Several genes implicated in autism spectrum disorder (ASD) are chromatin regulators, including POGZ. The cellular and molecular mechanisms leading to ASD impaired social and cognitive behavior are unclear. Animal models are crucial for studying the effects of mutations on brain function and behavior as well as unveiling the underlying mechanisms. Here, we generate a brain specific conditional knockout mouse model deficient for Pogz, an ASD risk gene. We demonstrate that Pogz deficient mice show microcephaly, growth impairment, increased sociability, learning and motor deficits, mimicking several of the human symptoms. At the molecular level, luciferase reporter assay indicates that POGZ is a negative regulator of transcription. In accordance, in Pogz deficient mice we find a significant upregulation of gene expression, most notably in the cerebellum. Gene set enrichment analysis revealed that the transcriptional changes encompass genes and pathways disrupted in ASD, including neurogenesis and synaptic processes, underlying the observed behavioral phenotype in mice. Physiologically, Pogz deficiency is associated with a reduction in the firing frequency of simple and complex spikes and an increase in amplitude of the inhibitory synaptic input in cerebellar Purkinje cells. Our findings support a mechanism linking heterochromatin dysregulation to cerebellar circuit dysfunction and behavioral abnormalities in ASD.
Photoaffinity labeling is used to covalently attach ligands to macromolecules to determine their spatial arrangement and structure. Benzophenone (BP) groups are widely used for covalent photoaffinity labeling and for probing protein interactions. We developed bifunctional BP photoactivatable derivatives using three different general chemical approaches. In addition to the photoaffinity reactivity of the BP, these derivatives contain an additional group: A radioactive tracer for biological studies, or an N-ethylmaleimide group as an additional crosslinker, or a biotin group to be used during purification and characterization of probe-protein complexes using the high-affinity biotin-avidin interaction. A model series of photoaffinity labeling probes was synthesized based on the arbutin ligand. These compounds can be used as probes to study the arbutin binding site of microbial beta-glucoside transporters by photolabeling residues in its vicinity. The second functionality provides additional options for studying proteins and binding sites. The probes were developed using different methodologies: (i) a diazotation reaction; (ii) protecting group methodology; and (iii) solid-phase synthesis. These procedures are general and provide a simple and versatile approach for synthesizing bifunctional BP ligands, as demonstrated here on arbutin.
BglF catalyzes -glucoside phosphotransfer across the cytoplasmic membrane in Escherichia coli. In addition, BglF acts as a sugar sensor that controls expression of -glucoside utilization genes by reversibly phosphorylating the transcriptional antiterminator BglG. Thus, BglF can exist in two opposed states: a nonstimulated state that inactivates BglG by phosphorylation and a sugar-stimulated state that activates BglG by dephosphorylation and phosphorylates the incoming sugar. Sugar phosphorylation and BglG (de)phosphorylation are both catalyzed by the same residue, Cys24. To investigate the coordination and the structural requirements of the opposing activities of BglF, we conducted a genetic screen that led to the isolation of mutations that shift the balance toward BglG phosphorylation. We show that some of the mutants that are impaired in dephosphorylation of BglG retained the ability to catalyze the concurrent activity of sugar phosphotransfer. These mutations map to two regions in the BglF membrane domain that, based on their predicted topology, were suggested to be implicated in activity. Using in vivo cross-linking, we show that a glycine in the membrane domain, whose substitution impaired the ability of BglF to dephosphorylate BglG, is spatially close to the active-site cysteine located in a hydrophilic domain. This residue is part of a newly identified motif conserved among -glucoside permeases associated with RNA-binding transcriptional antiterminators. The phenotype of the BglF mutants could be suppressed by BglG mutants that were isolated by a second genetic screen. In summary, we identified distinct sites in BglF that are involved in regulating phosphate flow via the common active-site residue in response to environmental cues.Proteins that execute different and/or opposing reactions depending on environmental conditions provide an opportunity to explore molecular switches. By and large, phosphorylation and dephosphorylation of proteins are carried out by separate factors, although there are proteins that catalyze both activities. One example is the group of kinases of the bacterial two-component systems that often act also as phosphatases of their cognate response regulators, e.g., EnvZ and NRII, but apparently they do so by stimulating autodephosphorylation by the regulators (35, 55). Another example is provided by proteins of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). Most phosphorylation reactions carried out by PTS proteins are reversible, and the direction of the reaction being catalyzed depends on carbohydrate availability (5, 56). This report focuses on BglF, which serves as a paradigm for a group of PTS sugar permeases that control expression of sugar utilization genes by reversibly phosphorylating transcriptional antiterminators depending on the availability of their cognate sugars (reviewed in references 1 and 67). BglF, the -glucoside phosphotransferase from Escherichia coli, negatively regulates expression of the bgl (-glucosides utilization) operon in the ab...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.