Direct utilization of treated effluent from natural treatment systems for irrigation can be challenging on sensitive plants due to high levels of salinity. Post-treatment of such an effluent prior to its applicability in irrigation can be of significant importance. In this study, the wastewater from a natural treatment plant was treated using a lab-scale filtration system with zeolite as a filter material. Three different column depths (0.5 m, 0.75 m, and 1 m) were used to investigate the effect of column depth on the treatment efficiency of the media. The suitability of the raw wastewater and the treated effluent from each column for irrigation purposes was investigated. The water quality parameters investigated were; electrical conductivity (EC), total dissolved solids (TDS), sodium (Na+), calcium (Ca2+), and magnesium (Mg2+). From the analysis results, it was observed that the column depth had a significant influence on the removal efficiency of the pollutants. The highest removal efficiency (94.58%) was achieved from the combination of electrical conductivity and 1 m column depth, while the lowest removal efficiency (10.05%) was observed from the combination of calcium and 0.5 m column depth. The raw wastewater fell mostly into a “very high” hazard, which is class four (C4) based on electrical conductivity and class four (S4) based sodium adsorption ratio; making it unsuitable for irrigation purposes. However, when the wastewater was subjected to 1 m column depth, the quality of the treated effluent improved significantly which in turn also improved the suitability of the effluent for irrigation purposes, with percent compliance ranging from 20.19% to 97.54%.
Waste recovery is an important aspect towards human and environmental health protection. Unfortunately, proper food waste management is among the serious challenges in the field of solid waste management worldwide. Therefore, it is of great importance to conduct studies towards achieving efficient and cost-effective approaches for food waste management. This study investigated the potential of recovering food waste through maggots’ production as animal feed. The influence of fly attractant application on maggot production was also investigated. The study also investigated the potential of maggot production for waste recovery and reduction. Four different types of food waste (starch food leftovers, rotten bananas and peels, rotten pineapple and peels, and rotten oranges) were used in the investigation process. From the results, it was observed that the application of fly attractants had a significant effect on the production of maggots as determined by the weights after harvesting. Average weight of 94 g/kg of maggot was achieved from banana materials with an application of fly attractant during the 8th day of the cultivation; which is equivalent to a 32.4% increase from the same day when the material was cultured without applying fly attractant. Also, from the starch materials, about 77 g/kg of maggot weight was achieved; which is a 54.6% increase from the same day and the same material but without application of fly attractant. Moreover, the relative dry weight reduction in the trials varied from 52.5% to 82.4%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.