Tutoring is a process of providing learning assistance to students from elementary school to high school. One of the tutoring institutions in Jember Regency is Griya Belajar Pintar Arrava. Arrava always tries to provide the best services and facilities for its students by providing quality teachers. Qualified teachers can be obtained through a good teacher selection process. However, Arrava's leader, who also serves as a decision maker, always has difficulty in choosing new teachers. Efforts that can be made to overcome these difficulties are by building a decision support system for teacher selection. The decision support system for teacher selection can assist Arrava leaders in selecting qualified teachers by providing applicant recommendations based on the results of system calculations. One method that can be used in the selection of teachers is the Promethee method. Promethee is a method that is able to solve problems in determining the order (priority). Basically the Promethee method compares the scores between alternatives (applicants) based on each criterion, resulting in a more accurate decision. The results of this study indicate that the applicant who is ranked first is Nur Khotimah with a value of 0.362014, the second is Hendra Setiawan with a value of 0.245347, the third is Miftahul Arifin with a value of 0.000833, the fourth is Novi Ekasari with a value of -0.3025, and the fifth is Nurul Azizah with a value of -0.30569.
Image Thresholding merupakan proses segmentasi untuk memisahkan foreground dan background pada citra dengan cara membagi histogram citra menjadi dua kelas. Beberapa metode thresholding seperti Otsu dan Range-constrained Otsu menggunakan nilai variansi dari histogram untuk mendapatkan titik threshold, namun ketika menangani citra yang memiliki nilai variansi kelas foreground dan background tidak seimbang titik threshold yang dihasilkan kurang tepat. Paper ini mengusulkan metode Adaptif Range-constrained Otsu untuk mengatasi permasalahan variansi kelas yang tidak seimbang dengan cara mencari kelas yang memiliki nilai variansi lebih besar, untuk mendapatkan titik threshold yang lebih tepat. Pengujian menggunakan 22 NDT image dengan evaluasi misclassification error rate dan metode perankingan menunjukkan metode ini menghasilkan rerata ME 0.1153. Sedangkan Otsu sebesar 0.1746. Nilai rerata ranking 3.55, selisih 0.05 dibanding Kittler III. Hasil ini menunjukkan metode yang diusulkan kompetitif, terutama untuk segmentasi citra yang memiliki variansi kelas tidak sama.
Bag of visual word (BoVW) merupakan metode yang menjelaskan isi dari gambar. Metode ini hanya menghitung banyaknya word dan tidak memberikan informasi spatial. Terdapat metode Visual word spatial arrangement (WSA) dimana metode ini memberikan informasi spatial tentang word tertentu pada gambar dengan menggunakan interest point sebagai detektor. WSA kurang dapat memberikan informasi yang penting pada gambar dikarenakan interest point yang dihasilkan oleh detektor dapat memberikan titik-titik yang berpotensi tidak merupakan representasi yang penting dari gambar tersebut. Pada paper ini diusulkan metode dense visual word spatial arrangement (DVSA) yang merupakan modifikasi metode dari WSA. Metode ini tidak menggunakan detektor interest point untuk menghitung deskriptor lokal melainkan dengan menghitung deskriptor lokal pada bagian komponen piksel-piksel yang saling berdekatan. Hasil pengujian pada 4485 gambar dengan 15 jenis kelas menggunakan 10-fold cross validation untuk 2 word metode yang diusulkan memberikan peningkatan performa sebesar 12.68 % dari akurasi BoVW sedangkan akurasi WSA lebih baik 15.62 % dari BoVW. Untuk 4 word metode yang diusulkan memberikan peningkatan performa akurasi sebesar 30.99 % dari akurasi BoVW dan peningkatan performa 18.16 % dari WSA. Sedangkan untuk 6 word metode yang diusulkan memberikan peningkatan performa sebesar 29.98 % dari akurasi BoVW dan peningkatan performa 18.75 % dari WSA. Peningkatan performa akurasi sebesar 36.2 % didapatkan oleh metode yang diusulkan dengan 6 word terhadap BoVW dengan 2 word. Peningkatan performa sampai 18.75 % yang dihasilkan DVSA dibandingkan WSA dan peningkatan performa sampai 30.99 % dibandingkan BoVW dengan jumlah word yang sama menunjukkan metode yang diusulkan kompetitif untuk mengenali jenis gambar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.