The accuracy of fingerprint recognition model is extremely important due to its usage in forensic and security fields. Any fingerprint recognition system has particular network architecture whereas many other networks achieve higher accuracy. To solve this problem in a unified model, this paper proposes a model that can automatically specify itself. So, it is called an automatic deep neural network (ADNN). Our algorithm can specify the appropriate architecture of the neural network used and some significant parameters of this network. These parameters are the number of filters, epochs, and iterations. It guarantees the highest accuracy by updating itself until achieving 99% accuracy then it stops and outputs the result. Moreover, this paper proposes an end-to-end methodology for recognizing a person's identity from the input fingerprint image based on a residual convolutional neural network. It is a complete system and is fully automated whether in the features extraction stage or the classification stage. Our goal is to automate this fingerprint recognition system because the more automatic the system is, the more time and effort it saves. Our model also allows users to react by inputting the initial values of these parameters. Then, the model updates itself until it finds the optimal values for the parameters and achieves the best accuracy. Another advantage of our algorithm is that it can recognize people from their thumb and other fingers and its ability to recognize distorted samples. Our algorithm achieved 99.75% accuracy on the public fingerprint dataset (SOCOFing). This is the best accuracy compared with other models.
The ability of any steganography system to correctly retrieve the secret message is the primary criterion for measuring its efficiency. Recently, researchers have tried to generate a new natural image driven from only the secret message bits rather than using a cover to embed the secret message within it; this is called the stego image. This paper proposes a new secured coverless steganography system using a generative mathematical model based on semi Quick Response (QR) code and maze game image generation. This system consists of two components. The first component contains two processes, encryption process, and hiding process. The encryption process encrypts secret message bits in the form of a semi-QR code image whereas the hiding process conceals the pregenerated semi-QR code in the generated maze game image. On the other hand, the second component contains two processes, extraction and decryption, which are responsible for extracting the semi-QR code from the maze game image and then retrieving the original secret message from the extracted semi-QR code image, respectively. The results were obtained using the bit error rate (BER) metric. These results confirmed that the system achieved high hiding capacity, good performance, and a high level of robustness against attackers compared with other coverless steganography methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.