Basal-like breast tumors occurred at a higher prevalence among premenopausal African American patients compared with postmenopausal African American and non-African American patients in this population-based study. A higher prevalence of basal-like breast tumors and a lower prevalence of luminal A tumors could contribute to the poor prognosis of young African American women with breast cancer.
Purpose: Expression profiling studies classified breast carcinomas into estrogen receptor (ER)؉/luminal, normal breast-like, HER2 overexpressing, and basal-like groups, with the latter two associated with poor outcomes. Currently, there exist clinical assays that identify ER؉/luminal and HER2-overexpressing tumors, and we sought to develop a clinical assay for breast basal-like tumors.Experimental Design: To identify an immunohistochemical profile for breast basal-like tumors, we collected a series of known basal-like tumors and tested them for protein patterns that are characteristic of this subtype. Next, we examined the significance of these protein patterns using tissue microarrays and evaluated the prognostic significance of these findings.Results: Using a panel of 21 basal-like tumors, which was determined using gene expression profiles, we saw that this subtype was typically immunohistochemically negative for estrogen receptor and HER2 but positive for basal cytokeratins, HER1, and/or c-KIT. Using breast carcinoma tissue microarrays representing 930 patients with 17.4-year mean follow-up, basal cytokeratin expression was associated with low disease-specific survival. HER1 expression was observed in 54% of cases positive for basal cytokeratins (versus 11% of negative cases) and was associated with poor survival independent of nodal status and size. c-KIT expression was more common in basal-like tumors than in other breast cancers but did not influence prognosis.Conclusions: A panel of four antibodies (ER, HER1, HER2, and cytokeratin 5/6) can accurately identify basallike tumors using standard available clinical tools and shows high specificity. These studies show that many basal-like tumors express HER1, which suggests candidate drugs for evaluation in these patients.
Microarray profiling of invasive breast carcinomas has identified five distinct subtypes of tumors (luminal A, luminal B, normal breast-like, HER2 overexpressing, and basal-like) that are associated with different clinical outcomes. The basal-like subtype is associated with poor clinical outcomes and is the subtype observed in BRCA1-related breast cancers. The aim of this study was to characterize the histologic and immunophenotypic properties of breast basal-like carcinomas that were first positively identified using DNA microarray analysis. Detailed histologic review was performed on 56 tumors with known microarray profiles (23 basal-like, 23 luminal, and 12 HER2 þ ). Immunohistochemistry for estrogen receptor (ER), HER2, EGFR, smooth muscle actin (SMA), p63, CD10, cytokeratin 5/6, cytokeratin 8/18, and vimentin was performed on 18 basal-like, 16 luminal, and 12 HER2 þ tumors. The basal-like tumors were grade 3 ductal/NOS (21/23) or metaplastic (2/23) carcinomas that frequently showed geographic necrosis (17/23), a pushing border of invasion (14/23), and a stromal lymphocytic response (13/23). Most basal-like tumors showed immunoreactivity for vimentin (17/18), luminal cytokeratin 8/18 (15/18), EGFR (13/18), and cytokeratin 5/6 (11/18), while positivity for the myoepithelial markers SMA (4/18), p63 (4/18) and CD10 (2/18) was infrequent. All basal-like tumors tested were ERÀ and HER2À. Morphologic features significantly associated with the basal-like subtype included markedly elevated mitotic count (Po0.0001), geographic tumor necrosis (P ¼ 0.0003), pushing margin of invasion (P ¼ 0.0001), and stromal lymphocytic response (P ¼ 0.01). The most consistent immunophenotype seen in the basal-like tumors was negativity for ER and HER2, and positivity for vimentin, EGFR, cytokeratin 8/18, and cytokeratin 5/6. The infrequent expression of myoepithelial markers in basal-like carcinomas does not support a direct myoepithelial cell derivation of these tumors. These findings should further assist in the identification of basal-like carcinomas in clinical specimens, facilitating treatment and epidemiologic studies of this tumor subtype.
The prognostication of head and neck squamous cell carcinoma (HNSCC) is largely based upon the tumor size and location and the presence of lymph node metastases. Here we show that gene expression patterns from 60 HNSCC samples assayed on cDNA microarrays allowed categorization of these tumors into four distinct subtypes. These subtypes showed statistically significant differences in recurrence-free survival and included a subtype with a possible EGFR-pathway signature, a mesenchymal-enriched subtype, a normal epithelium-like subtype, and a subtype with high levels of antioxidant enzymes. Supervised analyses to predict lymph node metastasis status were approximately 80% accurate when tumor subsite and pathological node status were considered simultaneously. This work represents an important step toward the identification of clinically significant biomarkers for HNSCC.
Recent gene profiling studies have identified a new breast cancer subtype, the basal-like group, which expresses genes characteristic of basal epithelial cells and is associated with poor clinical outcomes. However, the genes responsible for the aggressive behavior observed in this group are largely unknown. Here we report that the small heat shock protein α-basic-crystallin (αB-crystallin) was commonly expressed in basal-like tumors and predicted poor survival in breast cancer patients independently of other prognostic markers. We also demonstrate that overexpression of αB-crystallin transformed immortalized human mammary epithelial cells (MECs). In 3D basement membrane culture, αB-crystallin overexpression induced luminal filling and other neoplastic-like changes in mammary acini, while silencing αB-crystallin by RNA interference inhibited these abnormalities. αB-Crystallin overexpression also induced EGF-and anchorage-independent growth, increased cell migration and invasion, and constitutively activated the MAPK kinase/ERK (MEK/ERK) pathway. Moreover, the transformed phenotype conferred by αB-crystallin was suppressed by MEK inhibitors. In addition, immortalized human MECs overexpressing αB-crystallin formed invasive mammary carcinomas in nude mice that recapitulated aspects of human basal-like breast tumors. Collectively, our results indicate that αB-crystallin is a novel oncoprotein expressed in basal-like breast carcinomas that independently predicts shorter survival. Our data also implicate the MEK/ERK pathway as a potential therapeutic target for these tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.