The Hirota bilinear method is applied to find an exact shock soliton solution of the system reaction-diffusion equations for n-component vector order parameter, with the reaction part in form of the third order polynomial, determined by three distinct constant vectors. The bilinear representation is derived by extracting one of the vector roots (unstable in general), which allows us reduce the cubic nonlinearity to a quadratic one. The vector shock soliton solution, implementing transition between other two roots, as a fixed points of the potential from continuum set of the values, is constructed in a simple way. In our approach, the velocity of soliton is fixed by truncating the Hirota perturbation expansion and it is found in terms of all three roots. Shock solitons for extensions of the model, by including the second order time derivative term and the nonlinear transport term are derived. Numerical solutions illustrating generation of solitary wave from initial step function, depending of the polynomial roots are given.
In this paper, we contribute higher order operator splitting methods improved by Zassenhaus product. We apply the contribution to classical and iterative splitting methods. The underlying analysis to obtain higher order operator splitting methods is presented. While applying the methods to partial differential equations, the benefits of balancing time and spatial scales are discussed to accelerate the methods. The verification of the improved splitting methods are done with numerical examples. An individual handling of each operator with adapted standard higher order time-integrators is discussed. Finally, we conclude the higher order operator splitting methods
In this paper, we analyze the asymptotic behavior of a nonautonomous nonlinear problem proposed by G. F. Carrier. In addition to its historical interest, this problem presents some unusual features; the internal layers, instead of obeying an approximate equal spacing rule as in the famous "spurious solutions" problem, in fact, coalesce. This feature is revealed by unusual matching that incorporates exponentially small and large terms in the matching process. Symmetry notions also play a role in understanding this interesting phenomenon. The asymptotics are compared with full numerical solutions.
The Hirota method is applied to construct exact analytical solitary wave solutions of the system of multi-dimensional nonlinear wave equation for n-component vector with modified background. The nonlinear part is the third-order polynomial, determined by three distinct constant vectors. These solutions have not previously been obtained by any analytic technique. The bilinear representation is derived by extracting one of the vector roots (unstable in general). This allows to reduce the cubic nonlinearity to a quadratic one. The transition between other two stable roots gives us a vector shock solitary wave solution. In our approach, the velocity of solitary wave is fixed by truncating the Hirota perturbation expansion and it is found in terms of all three roots. Simulations of solutions for the one component and one-dimensional case are also illustrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.