The paper reports an analysis of the effect of high current pulsed electron beam(HCPEB) on microstructure transformations and wear resistance of hypereutectic Al-Si alloys. HCPEB treatment with 2.5 J /cm2 energy density leads to the formation of “halo” centered on primary Si, composition homogeneity, the formation of supersaturated solid solution of Al and grain refinement of top melted surface layer. The wear resistance of 15 pulse-treated Al-17.5Si and Al-20Si alloys is drastically improved by a factor of 6.5 and 2, respectively. The increase of hardness in modified surface layer has a positive effect on wear of hypereutectic Al-Si alloys.
Alumincoating was prepared on a Ni-Cr-W-Al nickel-base superalloy by pack cementation, the effects of Al content and aluminizing temperature on coating formation were investigated. Coating microstructures were investigated using optical and scanning electron microscopes, EDS and X-ray diffraction (XRD) techniques. The results showed that the coatings prepared at 800°C in the powders with 15%, 30% and 99% Al were different. NiAl3 coating was obtained in the conditions of aluminizing temperature of 700°C, 750°C, 850°C and of Al content of 99%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.