Multiwalled carbon nanotubes (MWNTs) grafted with poly(methyl methacrylate) (PMMA) were synthesized by emulsion reactions and used as a reinforcement for commercial PMMA. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the applied tensile load on the composites was transferred to the PMMA‐grafted MWNTs, leading to a strain failure of the MWNTs rather than an adhesive failure between the MWNTs and the matrix. Dynamic mechanical analysis (DMA) data showed that the storage modulus at 20 °C of the PMMA composite containing 20 wt.‐% of the PMMA‐grafted MWNTs was significantly enhanced by ∼ 29 GPa (or by ∼ 1100 %) as compared with commercial PMMA.
Silicon dioxide glass rods of micrometer sizes were synthesized by using surfactant-carbon nanotube co-micelles as templates. These glass rods were used as additives to reinforce inorganic ceramics. The mechanical strength of the silicon dioxide ceramic is enhanced by y100% in the presence of y6 wt% of CNTs.
An experimental investigation is performed into the tribological properties of mineral oil lubricants containing carbon nanocapsules (CNCs) additives with various concentrations (wt.%). Friction characteristics and wear behaviors at contact interfaces are examined by the block-on-ring tests, high-resolution transmission electron microscopy (HRTEM), and mapping (MAP) analysis. The results suggest that the addition of CNCs to the mineral oil yields an effective reduction in the friction coefficient at the contact interface. Molecular dynamics (MD) simulations clarify the lubrication mechanism of CNCs at the sliding system, indicating the tribological properties are essentially sensitive to the structural evolutions of CNCs.
BackgroundCarbon nanotubes (CNTs) have found wide success in circuitry, photovoltaics, and other applications. In contrast, several hurdles exist in using CNTs towards applications in drug delivery. Raw, non-modified CNTs are widely known for their toxicity. As such, many have attempted to reduce CNT toxicity for intravenous drug delivery purposes by post-process surface modification. Alternatively, a novel sphere-like carbon nanocapsule (CNC) developed by the arc-discharge method holds similar electric and thermal conductivities, as well as high strength. This study investigated the systemic toxicity and biocompatibility of different non-surface modified carbon nanomaterials in mice, including multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), carbon nanocapsules (CNCs), and C60 fullerene (C60). The retention of the nanomaterials and systemic effects after intravenous injections were studied.Methodology and Principal FindingsMWCNTs, SWCNTs, CNCs, and C60 were injected intravenously into FVB mice and then sacrificed for tissue section examination. Inflammatory cytokine levels were evaluated with ELISA. Mice receiving injection of MWCNTs or SWCNTs at 50 µg/g b.w. died while C60 injected group survived at a 50% rate. Surprisingly, mortality rate of mice injected with CNCs was only at 10%. Tissue sections revealed that most carbon nanomaterials retained in the lung. Furthermore, serum and lung-tissue cytokine levels did not reveal any inflammatory response compared to those in mice receiving normal saline injection.ConclusionCarbon nanocapsules are more biocompatible than other carbon nanomaterials and are more suitable for intravenous drug delivery. These results indicate potential biomedical use of non-surface modified carbon allotrope. Additionally, functionalization of the carbon nanocapsules could further enhance dispersion and biocompatibility for intravenous injection.
Copper nanowires with multiwall carbon nanotubes (MWNTs) encapsulated inside were prepared via surface modification of MWNTs followed by chemical deposition of copper on surfaces. These MWNTs-encapsulated copper nanowires were investigated as a reinforcement to improve the mechanical strength of the Y-Ba-Cu-O superconductor. TEM and SEM reveal that MWNTs are uniformly coated by copper and the diameters of the prepared MWNTs-encapsulated Cu nanowires range from 50 to 150 nm and the lengths are up to several micrometers. These MWNTs-containing Cu nanowires could effectively improve the hardness of the Y-Ba-Cu-O without sacrificing its superconductivity. The Vicker's hardness of the Y-Ba-Cu-O is reinforced by ∼20% after 5 wt % of MWNTs incorporation. This study presents the first result that demonstrates the feasibility of the reinforcement of brittle YBaCuO superconductor by using MWNTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.