In the past, numerous methods have been developed to predict MHC class II binders or T-helper epitopes for designing the epitope-based vaccines against pathogens. In contrast, limited attempts have been made to develop methods for predicting T-helper epitopes/peptides that can induce a specific type of cytokine. This paper describes a method, developed for predicting interleukin-10 (IL-10) inducing peptides, a cytokine responsible for suppressing the immune system. All models were trained and tested on experimentally validated 394 IL-10 inducing and 848 non-inducing peptides. It was observed that certain types of residues and motifs are more frequent in IL-10 inducing peptides than in non-inducing peptides. Based on this analysis, we developed composition-based models using various machine-learning techniques. Random Forest-based model achieved the maximum Matthews’s Correlation Coefficient (MCC) value of 0.59 with an accuracy of 81.24% developed using dipeptide composition. In order to facilitate the community, we developed a web server “IL-10pred”, standalone packages and a mobile app for designing IL-10 inducing peptides (http://crdd.osdd.net/raghava/IL-10pred/).
AHTPDB (http://crdd.osdd.net/raghava/ahtpdb/) is a manually curated database of experimentally validated antihypertensive peptides. Information pertaining to peptides with antihypertensive activity was collected from research articles and from various peptide repositories. These peptides were derived from 35 major sources that include milk, egg, fish, pork, chicken, soybean, etc. In AHTPDB, most of the peptides belong to a family of angiotensin-I converting enzyme inhibiting peptides. The current release of AHTPDB contains 5978 peptide entries among which 1694 are unique peptides. Each entry provides detailed information about a peptide like sequence, inhibitory concentration (IC50), toxicity/bitterness value, source, length, molecular mass and information related to purification of peptides. In addition, the database provides structural information of these peptides that includes predicted tertiary and secondary structures. A user-friendly web interface with various tools has been developed to retrieve and analyse the data. It is anticipated that AHTPDB will be a useful and unique resource for the researchers working in the field of antihypertensive peptides.
High blood pressure or hypertension is an affliction that threatens millions of lives worldwide. Peptides from natural origin have been shown recently to be highly effective in lowering blood pressure. In the present study, we have framed a platform for predicting and designing novel antihypertensive peptides. Due to a large variation found in the length of antihypertensive peptides, we divided these peptides into four categories (i) Tiny peptides, (ii) small peptides, (iii) medium peptides and (iv) large peptides. First, we developed SVM based regression models for tiny peptides using chemical descriptors and achieved maximum correlation of 0.701 and 0.543 for dipeptides and tripeptides, respectively. Second, classification models were developed for small peptides and achieved maximum accuracy of 76.67%, 72.04% and 77.39% for tetrapeptide, pentapeptide and hexapeptides, respectively. Third, we have developed a model for medium peptides using amino acid composition and achieved maximum accuracy of 82.61%. Finally, we have developed a model for large peptides using amino acid composition and achieved maximum accuracy of 84.21%. Based on the above study, a web-based platform has been developed for locating antihypertensive peptides in a protein, screening of peptides and designing of antihypertensive peptides.
The conventional approach for designing vaccine against a particular disease involves stimulation of the immune system using the whole pathogen responsible for the disease. In the post-genomic era, a major challenge is to identify antigenic regions or epitopes that can stimulate different arms of the immune system. In the past two decades, numerous methods and databases have been developed for designing vaccine or immunotherapy against various pathogen-causing diseases. This review describes various computational resources important for designing subunit vaccines or epitope-based immunotherapy. First, different immunological databases are described that maintain epitopes, antigens and vaccine targets. This is followed by in silico tools used for predicting linear and conformational B-cell epitopes required for activating humoral immunity. Finally, information on T-cell epitope prediction methods is provided that includes indirect methods like prediction of Major Histocompatibility Complex and transporter-associated protein binders. Different studies for validating the predicted epitopes are also examined critically. This review enlists novel in silico resources and tools available for predicting humoral and cell-mediated immune potential. These predicted epitopes could be used for designing epitope-based vaccines or immunotherapy as they may activate the adaptive immunity. Authors emphasized the need to develop tools for the prediction of adjuvants to activate innate and adaptive immune system simultaneously. In addition, attention has also been given to novel prediction methods to predict general therapeutic properties of peptides like half-life, cytotoxicity and immune toxicity.
Background: Fragile sites are the chromosomal regions that are susceptible to breakage, and their frequency varies among the human population. Based on the frequency of fragile site induction, they are categorized as common and rare fragile sites. Common fragile sites are sensitive to replication stress and often rearranged in cancer. Rare fragile sites are the archetypal trinucleotide repeats. Fragile sites are known to be involved in chromosomal rearrangements in tumors. Human miRNA genes are also present at fragile sites. A better understanding of genes and miRNAs lying in the fragile site regions and their association with disease progression is required. Result: HumCFS is a manually curated database of human chromosomal fragile sites. HumCFS provides useful information on fragile sites such as coordinates on the chromosome, cytoband, their chemical inducers and frequency of fragile site (rare or common), genes and miRNAs lying in fragile sites. Protein coding genes in the fragile sites were identified by mapping the coordinates of fragile sites with human genome Ensembl (GRCh38/hg38). Genes present in fragile sites were further mapped to DisGenNET database, to understand their possible link with human diseases. Human miRNAs from miRBase was also mapped on fragile site coordinates. In brief, HumCFS provides useful information about 125 human chromosomal fragile sites and their association with 4921 human protein-coding genes and 917 human miRNA's. Conclusion: User-friendly web-interface of HumCFS and hyper-linking with other resources will help researchers to search for genes, miRNAs efficiently and to intersect the relationship among them. For easy data retrieval and analysis, we have integrated standard web-based tools, such as JBrowse, BLAST etc. Also, the user can download the data in various file formats such as text files, gff3 files and Bed-format files which can be used on UCSC browser.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.