Nitrogen (15N) and carbon (12C) ion implantations with implant energy of 100 keV for different doses were performed on nanosized diamond (ND) particles. Magnetic measurements on the doped ND show ferromagnetic hysteresis behavior at room temperature. The saturation magnetization (M(s)) in the case of 15N implanted samples was found to be higher compared to the 12C implanted samples for dose sizes greater than 10(14) cm(-2). The role of structural modification or defects along with the carbon-nitrogen (C-N) bonding states for the observed enhanced ferromagnetic ordering in 15N doped samples is explained on the basis of x-ray photoelectron spectroscopy measurements.
We demonstrate a new, room-temperature approach to assemble two-dimensional and three-dimensional networks of gold nanowires by agitating nanoparticles in a toluene-aqueous mixture, without the use of templates. The nanowires have a uniform diameter of about 5 nm and consist of coalesced face-centered cubic nanocrystals. Toluene molecules passivate the gold surfaces during nanoparticle coalescence, rendering the nanowires hydrophobic and enabling their transfer into the toluene layer. Such templateless low-temperature assembly of mesostructures from nanoscale building blocks open up new possibilities for creating porous self-supporting nanocatalysts, nanowires for device interconnection, and low-density high-strength nanofillers for composites.
Two ligand‐protected nanoscale silver moieties, [Ag46(SPhMe2)24(PPh3)8](NO3)2 and [Ag40(SPhMe2)24(PPh3)8](NO3)2 (abbreviated as Ag46 and Ag40, respectively) with almost the same shell but different cores were synthesized simultaneously. As their external structures are identical, the clusters were not distinguishable and become co‐crystallized. The occupancy of each cluster was 50 %. The outer shell of both is composed of Ag32S24P8, which is reminiscent of fullerenes, and it encapsulates a well‐studied core, Ag14 and a completely new core, Ag8, which correspond to a face‐centered cube and a simple cube, respectively, resulting in the Ag46 and Ag40 clusters. The presence of two entities (Ag40 and Ag46 clusters) in a single crystal and their molecular formulae were confirmed by detailed electrospray ionization mass spectrometry. The optical spectrum of the mixture showed unique features which were in good agreement with the results from time‐dependent density functional theory (TD‐DFT).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.