Drug design involves the process of identifying and designing molecules that bind well to a given receptor. A vital computational component of this process is the protein−ligand interaction scoring functions that evaluate the binding ability of various molecules or ligands with a given protein receptor binding pocket reasonably accurately. With the publicly available protein− ligand binding affinity data sets in both sequential and structural forms, machine learning methods have gained traction as a top choice for developing such scoring functions. While the performance shown by these models is optimistic, there are several hidden biases present in these data sets themselves that affect the utility of such models for practical purposes such as virtual screening. In this work, we use published methods to systematically investigate several such factors or biases present in these data sets. In our analysis, we highlight the importance of considering sequence, protein−ligand interaction, and pocket structure similarity while constructing data splits and provide an explanation for good protein-only and ligand-only performances in some data sets. Through this study, we provide to the community several pointers for the design of binding affinity predictors and data sets for reliable applicability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.