Purpose: This investigation was carried out to determine if a solid dispersion of furosemide in sodium starch glycolate (SSG) would enhance the dissolution properties of the drug. Methods: Solid dispersion of furosemide in SSG was prepared in ratios of 1:1 and 1 (furosemide):2 (SSG) by kneading method. In each case, the solid dispersion was characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) to ascertain if there were any physicochemical interactions between drug and carrier that could affect dissolution. Tablets containing the solid dispersion were formulated and their dissolution characteristics compared with commercial furosemide tablets. The dissolution studies were performed at 37 ± 0.5 o C and 50 rpm in simulated gastric fluid (pH 1.2). Results: FTIR spectroscopy, DSC, and XRD showed a change in crystal structure toward an amorphous form of furosemide. Dissolution data indicated that furosemide dissolution was enhanced. XRD, DSC, FTIR spectroscopy and dissolution studies indicated that the solid dispersion formulated in 1:2 ratio showed a 5.40-fold increase in dissolution and also exhibited superior dissolution characteristics to commercial furosemide tablets. Conclusion: Solid dispersion technique can be used to improve the dissolution of furosemide.
The purpose of the present study was to prepare inclusion complex of domperidone with hydroxylpropyl-β-cyclodextrin in order improved the solubility and hence to increase dissolution of domperidone. An effect of concentration of hydroxylpropyl-β-cyclodextrin on the aqueous solubility of domperidone was determined by phase-solubility method. The aqueous solubility of domperidone increased as a function of hydroxylpropyl-β-cyclodextrin concentration, showing AL type diagram. Solid domperidone/hydroxylpropyl-β-cyclodextrin complex was prepared in ratio 1:1 by ultrasonication and kneading method. Solid state inclusion complex was characterized by FTIR, powder X-ray diffraction and differential-scanning calorimetry techniques. FTIR studies showed intactness of drug in complex whereas powder diffraction studies showed that hydroxylpropyl-β-cyclodextrin complex was amorphous. Solubility studies showed that complexation increased domperidone solubility as compared to pure drug in 0.1M hydrochloric acid and distilled water. Drug content confirms that ultrasonication is one of the efficient methods to prepare inclusion complex. Dissolution data of inclusion complexes also indicated that there is 1.4 folds increase in dissolution as compared to pure drug and was observed in case of inclusion complexes prepared by ultrasonication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.