Coronavirus disease 2019 (COVID-19) caused by 2019 novel coronavirus (2019-nCoV) has caused significant mortality and has been declared as a global pandemic by the World Health Organization. The infection mainly presents as fever, cough, and breathing difficulty, and few patients develop very severe symptoms. The purpose of this review is to analyze the impact of the virus on the kidney. COVID-19 infection causes acute kidney injury (AKI) and is an independent risk factor for mortality. Angiotensin-converting enzyme 2 (ACE2) receptors, direct viral damage, and immune-mediated damage play important roles in the pathogenesis. AKI in COVID-19 infection could be from the synergistic effect of virus-induced direct cytotropic effect and cytokine-induced systemic inflammatory response. AKI caused in the viral infection has been analyzed from the available epidemiological studies. The proportion of patients developing AKI is significantly higher when they develop severe disease. Continuous renal replacement therapy (CRRT) is the most used blood purification technique when needed. The impact of COVID-19 infection on chronic kidney disease (CKD) and renal transplant patients is also discussed in the manuscript. No vaccine has been developed against the 2019-nCoV virus to date. The critical aspect of management is supportive care. Several investigative drugs have been studied, drugs approved for other indications have been used, and several clinical trials are underway across the globe. Recently remdesivir has received emergency use authorization by the Food and Drug Administration (FDA) in the USA for use in patients hospitalized with COVID-19. Prevention of the infection holds the key to management. The patients with underlying kidney problems and renal transplant patients are vulnerable to developing COVID-19 infection.
Coronavirus disease 2019 caused infection in 168,000 cases worldwide in about 148 countries and killed more than 6,610 people around the world as of March 16, 2020, as per the World Health Organization (WHO). Compared to severe acute respiratory syndrome and Middle East respiratory syndrome, there is the rapid transmission, long incubation period, and disease containment is becoming extremely difficult. The main aim of this systematic review is to provide a comprehensive clinical summary of all the available data from high-quality research articles relevant to the epidemiology, demographics, trends in hospitalization and outcomes, clinical signs and symptoms, diagnostic methods and treatment methods of COVID-19, thus increasing awareness in health care providers. We also discussed various preventive measures to combat COVID-19 effectively. A systematic and protocol-driven approach is needed to contain this disease, which was declared as a global pandemic on March 11, 2020, by the WHO. Literature Search MethodsWe conducted a systematic search of published articles from PubMed, google scholar databases and in-press literature from google search engine through snowballing. There were two independent reviewers, each focusing on COVID-19, novel coronavirus (nCoV), SARS and MERS, and third independent reviewer to resolve any conflicting article of interest. We used the keywords as mentioned above and after stringent exclusion criteria, a total of 58 articles, including reports from the trusted newspapers and websites. Most of the articles were single case reports, multiple case studies and systematic reviews (11 retrospective studies, one meta-analysis, three systematic reviews, six case series, five case reports, five newspapers, 24 science research articles, and rest 3 reference's from official websites). EpidemiologyThe initial cases were strongly associated with the Huanan seafood market, in which exotic animals were sold for food [3]. According to Lu et al, the virus (termed SARS-CoV-2) shares 88% sequence identity to two coronaviruses found in bats, bat-
Importance As the scientific community is in a marathon in finding out the cure for COVID-19, in this crisis, it is essential for the physicians not to forget about the basics. Due to the pandemic crisis, in many nursing homes and hospitals, there established new policies on decreasing unnecessary medications to minimize cross-contamination. Sometimes these policies are making providers avoid essential drugs such as Vitamins, including Vitamin D. In this paper, we try to emphasize the importance of Vitamin D in COVID-19 and respiratory viral patients. Relevance Vitamin D helps in decreasing the ‘pro-inflammatory cytokines’ in the lungs and acts in immunomodulatory function, and ‘also it will increase the anti-inflammatory, antiviral responses of the respiratory epithelial cells during infection.’ Conclusion Due to the highly contagious nature of COVID-19 and the increased morbidity and mortality with no appropriate therapy and vaccine, one must be cautious and do everything to help COVID-19 patients. In hospitals and other health care settings to decrease cross-contamination, holding other non-essential medications is taking place. Discontinuing Vitamins could increase the mortality and morbidity of those affected, especially in deficient/insufficient individuals. Obtaining serum 25 (OH) D levels in all patients with viral respiratory infections, especially COVID-19, could help in the detection and treatment of Vitamin D deficiency and potentially decrease recovery time and improve outcome. Even though evidence suggests that vitamin D has the anti-inflammatory, antiviral properties, randomized double-blinded controlled trials are needed to verify this further, and to understand Vitamin D and COVID-19 better. Abbreviations Vitamin D receptor-VDR; 25(OH)D- 25 hydroxyvitamin D; 1,25 (OH)D-1,25 dihydroxy Vitamin D; 1α,25-dihydroxy Vitamin D-1,25[OH] 2 D or calcitriol; IU- International Units; Interferons stimulated genes- ISG; ARI- acute respiratory infection; RSV- respiratory syncytial virus; RTI- Respiratory tract infections; COPD-Chronic obstructive pulmonary disease; BMI-Basal metabolic index; USA-USA.
Fat embolism syndrome is a relatively infrequent presentation in sickle cell thalassemia patients. It most commonly occurs in long bone fractures in the setting of trauma. However, nonorthopedic trauma and nontraumatic cases have been reported to contribute to fat embolism. The fat embolic syndrome is an underdiagnosed, life-threatening, and debilitating complication of sickle-β-thalassemia–related hemoglobinopathies. It is primarily seen in milder versions of sickle cell disease, including HbSC and sickle cell β-thalassemia, with the mild prior clinical course without complications; hence, diagnosis can be easily missed. Pathogenesis of fat embolic syndrome is a combination of mechanical obstruction from fat globules released into systemic circulation at the time of bone marrow necrosis and direct tissue toxicity from fatty acids and inflammatory cytokines released from fat globules. Prompt diagnosis and early initiation of treatment can reduce morbidity and mortality and result in better outcomes and prognosis. Red cell exchange transfusion is the mainstay of therapy with mortality benefits. Overall mortality and neurological sequelae continue to be high despite increased red cell exchange transfusion in the last few years. In this article, we discussed a case of a 34-year-old male patient with a history of sickle cell thalassemia and avascular necrosis of the hip, who presented with fever, hypoxia, encephalopathy, and generalized body aches, found to have thrombocytopenia and punctate lesions on magnetic resonance imaging brain, which led to the diagnosis of the fat embolism syndrome. Only a few sickle cell β-thalassemia with fat embolic syndrome cases have been reported.
Neuromyelitis Optica or Devic disease is changed to Neuromyelitis Optica spectrum disorder to include more diverse neurological and autoimmune manifestations. This is a severe relapsing autoimmune demyelinating disorder commonly affecting the optic nerve and spinal cord. It has been reported as either the first manifestation of SLE or as a coexisting condition with other autoimmune disorders commonly included but not limited to SLE and SS. We discussed a case of a 49-year-old female patient who was initially presented with a left-sided weakness that rapidly progressed to quadriparesis and bladder dysfunction within a few days. She had positive autoimmune serology tests for SLE posing a diagnostic challenge as SLE is associated with neurological manifestations. Due to a lack of definitive diagnostic criteria for SLE, presence of AQP-4 antibodies in CSF, and evidence of longitudinal extensive transverse myelitis in MRI cervical spine, we conclude that she has Neuromyelitis Optica spectrum disorder with probable SLE. It is possible that she may develop more signs and symptoms of SLE with time and will need close follow up. Timely diagnosis and prompt treatment are vital to decrease morbidity and mortality, as done in our case. The patient was started on high-dose steroids with significant improvement in her symptoms. These patients may need early treatment with plasmapheresis and long-term follow-up with immunotherapy to prevent relapse. There are few case reports in the literature, and more information is needed to understand and better diagnose NMO with coexisting SLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.