A remote site in the Tallgrass Prairie Preserve (Osage County, OK) was contaminated with crude oil by a pipeline break in 1992. In 1996, the contaminated soil was bioremediated by blending with uncontaminated soil, prairie hay, buffalo manure, and commercial fertilizers, and spreading in a shallow layer over uncontaminated soil to create a landfarm. The landfarm was monitored for two years for aerobic and anaerobic bacteria, soil gases indicative of microbial activity, and for changes in the concentration of total petroleum hydrocarbons (TPH). Levels of hydrocarbon degraders and soil gas indicators of aerobic degradation were stimulated in the landfarm during the first warm season relative to uncontaminated prairie soil. However, these same indicators were less conclusive during the second warm season, indicating depletion of the more easily degradable hydrocarbons, although the landfarm still contained 6,800 mg/kg TPH on the average at the beginning of the second warm season. Methane formation and methanogen counts were clearly stimulated in the first warm season relative to uncontaminated prairie soil, indicating that methanogenesis plays an important role in the mineralization of hydrocarbons even in these shallow soils.
A remote site in the Tallgrass Prairie Preserve of Oklahoma (The Nature Conservancy) was contaminated with crude oil from a pipeline break and is being bioremediated using landfanning techniques. Landfarming is designed to stimulate microbial-based catabolism of petroleum through combined dilutiodmixing and fertilization-based effects. To evaluate nitrogen-based effects during remediation, the site was sectioned and treated with urea, ammonium sulfate, or ammonium nitrate. Samples were obtained from prairie soil without chemical nitrogen addition and with or without hydrocarbon contamination. Nitrogen cycling dynamics were followed by measuring ammonium, nitrite, nitrate, and volatile nitric oxide (NO,) levels. Nitrifying and denitrifying bacterial numbers were estimated and compared to soil oxygen, carbon dioxide, and methane levels as well as to overall total petroleum hydrocarbon (TPH) reduction. For a prairie ecosystem of this type, a high level of fertilization, particularly with nitrogen, can have ecological effects almost as profound as the petroleum contamination itself. Fertilization of the oil-contaminated soil with the reduced and/or oxidized forms of nitrogen quickly resulted in elevated steady-state levels of both ammonium and nitrate, and exceptionally high levels of NO, released from soil. Although nitrogen fertilization increased microbial nitrogen metabolism and nitrogen cycling, it had minimal effects on the overall remediation efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.