Alzheimer's disease (AD) is one of the major worldwide causes of dementia that is characterized by irreversible decline in learning, memory loss, and behavioral impairments. Mitophagy is selective autophagy through the clearance of aberrant mitochondria, specifically for degradation to maintain energy generation and neuronal and synaptic function in the brain. Accumulating evidence shows that defective mitophagy is believed to be as one of the early and prominent features in AD pathogenesis and has drawn attention in the recent few years. APOE ε4 allele is the greatest genetic determinant for AD and is widely reported to mediate detrimental effects on mitochondria function and mitophagic process. Given the continuity of the physiological process, this review takes the mitochondrial dynamic and mitophagic core events into consideration, which highlights the current knowledge about the molecular alterations from an APOE-genotype perspective, synthesizes ApoE4-associated regulations, and the cross-talk between these signaling, along with the focuses on general autophagic process and several pivotal processes of mitophagy, including mitochondrial dynamic (DRP1, MFN-1), mitophagic induction (PINK1, Parkin). These may shed new light on the link between ApoE4 and AD and provide novel insights for promising mitophagy-targeted therapeutic strategies for AD.
Biofragmentable anastomosis ring (BAR) is an ideal sutureless alternative for intestinal connection that is frequently demanded in colonic surgery. However, it is challenging to insert a bulky BAR into the soft and slippery intestine. Here 4D printing of an anastomosis ring with shape memory capability is presented via fused deposition modeling (FDM) 3D printing. The shape memory anastomosis ring can recover from a compressed shape that facilitates the insertion to the permanent shape for connection and supporting. Degradation kinetics is tuned by controlling the blending composition of polylactic acid and poly(lactic-co-glycolic acid), so that the device can be excreted after the intestine healing. The shape recovery temperature is adjusted to 50 °C that the human body can withstand for a while. Grid structure and hook lock are designed and printed to guarantee dimension reduction upon programming and stable connection after shape recovery, respectively. A conceptual anastomotic operation shows the advantages and prospects of shape transformation. The 4D printing strategy may promote intestinal anastomosis development and inspire more opportunities for minimally invasive medical surgery.
In order to improve air pressure utilization and working performance, the direct seed-metering device for rice was designed with spoiler blades embedded in the air cavity. The study was carried out using theoretical analysis and hydrodynamic methods to obtain the optimum structure of the spoiler blades. Taking the rotating speed of the air cavity, the negative pressure of the air cavity, and the filling height as the test factors, the multiple regression analysis and the response surface analysis were carried out to obtain the best working parameters of the seed-metering device with spoiler blades. The results showed that when the rotating speed of the air cavity was 23.56 r/min, the negative pressure of the air cavity was 4.97 kPa and the filling height was 12.82 cm, the qualified index was 95.21%, the missing index was 3.28% and the multiple index was 1.51%, which was the best seeding performance. Comparing the test with the seed-metering device without spoiler blades, the results showed that the installation of spoiler blades can improve the performance of the seed-metering device under the best working parameters. This study provide a reference for the design of direct seed-metering device for rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.