All neuroimaging packages can handle group analysis with t-tests or general linear modeling (GLM). However, they are quite hamstrung when there are multiple within-subject factors or when quantitative covariates are involved in the presence of a within-subject factor. In addition, sphericity is typically assumed for the variance–covariance structure when there are more than two levels in a within-subject factor. To overcome such limitations in the traditional AN(C)OVA and GLM, we adopt a multivariate modeling (MVM) approach to analyzing neuroimaging data at the group level with the following advantages: a) there is no limit on the number of factors as long as sample sizes are deemed appropriate; b) quantitative covariates can be analyzed together with within- subject factors; c) when a within-subject factor is involved, three testing methodologies are provided: traditional univariate testing (UVT)with sphericity assumption (UVT-UC) and with correction when the assumption is violated (UVT-SC), and within-subject multivariate testing (MVT-WS); d) to correct for sphericity violation at the voxel level, we propose a hybrid testing (HT) approach that achieves equal or higher power via combining traditional sphericity correction methods (Greenhouse–Geisser and Huynh–Feldt) with MVT-WS.
FMRI data acquisition under naturalistic and continuous stimuli (e.g., watching a video or listening to music) has become popular recently due to the fact that it entails less manipulation and more realistic/complex contexts involved in the task, compared to the conventional task-based experimental designs. The synchronization or response similarities among subjects are typically measured through inter-subject correlation (ISC) between any pair of subjects. At the group level, summarizing the collection of ISC values is complicated by their intercorrelations, which necessarily lead to the violation of independence assumed in typical parametric approaches such as Student’s t-test. Nonparametric methods, such as bootstrapping and permutation testing, have previously been adopted for testing purposes by resampling the time series of each subject, but the quantitative validity of these specific approaches in terms of controllability of false positive rate (FPR) has never been explored before. Here we survey the methods of ISC group analysis that have been employed in the literature, and discuss the issues involved in those methods. We then propose less computationally intensive nonparametric methods that can be performed at the group level (for both one- and two-sample analyses), as compared to the popular method of circularly shifting the EPI time series at the individual level. As part of the new approaches, subject-wise (SW) resampling is adopted instead of element-wise (EW) resampling, so that exchangeability and independence assumptions are satisfied, and the patterned correlation structure among the ISC values can be more accurately captured. We examine the FPR controllability and power achievement of all the methods through simulations, as well as their performance when applied to a real experimental dataset. The new methodologies are shown to be both efficient and robust, and they have been implemented into an open source program, 3dNPT, in AFNI (http://afni.nimh.nih.gov).
Intraclass correlation (ICC) is a reliability metric that gauges similarity when, for example, entities are measured under similar, or even the same, well-controlled conditions, which in MRI applications include runs/sessions, twins, parent/child, scanners, sites, and so on. The popular definitions and interpretations of ICC are usually framed statistically under the conventional ANOVA platform. Here, we provide a comprehensive overview of ICC analysis in its prior usage in neuroimaging, and we show that the standard ANOVA framework is often limited, rigid, and inflexible in modeling capabilities. These intrinsic limitations motivate several improvements. Specifically, we start with the conventional ICC model under the ANOVA platform, and extend it along two dimensions: first, fixing the failure in ICC estimation when negative values occur under degenerative circumstance, and second, incorporating precision information of effect estimates into the ICC model. These endeavors lead to four modeling strategies: linear mixed-effects (LME), regularized mixed-effects (RME), multilevel mixed-effects (MME), and regularized multilevel mixed-effects (RMME). Compared to ANOVA, each of these four models directly provides estimates for fixed effects and their statistical significances, in addition to the ICC estimate. These new modeling approaches can also accommodate missing data and fixed effects for confounding variables. More importantly, we show that the MME and RMME approaches offer more accurate characterization and decomposition among the variance components, leading to more robust ICC computation. Based on these theoretical considerations and model performance comparisons with a real experimental dataset, we offer the following general-purpose recommendations. First, ICC estimation through MME or RMME is preferable when precision information (i.e., weights that more accurately allocate the variances in the data) is available for the effect estimate; when precision information is unavailable, ICC estimation through LME or the RME is the preferred option. Second, even though the absolute agreement version, ICC(2,1), is presently more popular in the field, the consistency version, ICC(3,1), is a practical and informative choice for whole-brain ICC analysis that achieves a well-balanced compromise when all potential fixed effects are accounted for. Third, approaches for clear, meaningful, and useful result reporting in ICC analysis are discussed. All models, ICC formulations, and related statistical testing methods have been implemented in an open source program 3dICC, which is publicly available as part of the AFNI suite. Even though our work here focuses on the whole-brain level, the modeling strategy and recommendations can be equivalently applied to other situations such as voxel, region, and network levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.